Suppr超能文献

CLigOpt:通过针对特定目标的优化进行可控配体设计。

CLigOpt: controllable ligand design through target-specific optimization.

机构信息

Department of Informatics, King's College London, London WC2B 4BG, United Kingdom.

Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore.

出版信息

Bioinformatics. 2024 Sep 1;40(Suppl 2):ii62-ii69. doi: 10.1093/bioinformatics/btae396.

Abstract

MOTIVATION

A key challenge in deep generative models for molecular design is to navigate random sampling of the vast molecular space, and produce promising molecules that strike a balance across multiple chemical criteria. Fragment-based drug design (FBDD), using fragments as starting points, is an effective way to constrain chemical space and improve generation of biologically active molecules. Furthermore, optimization approaches are often implemented with generative models to search through chemical space, and identify promising samples which satisfy specific properties. Controllable FBDD has promising potential in efficient target-specific ligand design.

RESULTS

We propose a controllable FBDD model, CLigOpt, which can generate molecules with desired properties from a given fragment pair. CLigOpt is a variational autoencoder-based model which utilizes co-embeddings of node and edge features to fully mine information from molecular graphs, as well as a multi-objective Controllable Generation Module to generate molecules under property controls. CLigOpt achieves consistently strong performance in generating structurally and chemically valid molecules, as evaluated across six metrics. Applicability is illustrated through ligand candidates for hDHFR and it is shown that the proportion of feasible active molecules from the generated set is increased by 10%. Molecular docking and synthesizability prediction tasks are conducted to prioritize generated molecules to derive potential lead compounds.

AVAILABILITY AND IMPLEMENTATION

The source code is available via  https://github.com/yutongLi1997/CLigOpt-Controllable-Ligand-Design-through-Target-Specific-Optimisation.

摘要

动机

在用于分子设计的深度生成模型中,一个关键挑战是在广阔的分子空间中进行随机采样,并生成在多个化学标准之间取得平衡的有前途的分子。基于片段的药物设计 (FBDD) 使用片段作为起点,是约束化学空间和提高生成具有生物活性分子的有效方法。此外,优化方法通常与生成模型一起实施,以在化学空间中进行搜索,并识别满足特定性质的有前途的样本。可控 FBDD 在高效的靶向配体设计中具有很有前途的潜力。

结果

我们提出了一种可控的 FBDD 模型 CLigOpt,它可以从给定的片段对生成具有所需性质的分子。CLigOpt 是一种基于变分自动编码器的模型,它利用节点和边缘特征的共同嵌入来充分挖掘分子图中的信息,以及一个多目标可控生成模块来根据属性控制生成分子。CLigOpt 在生成结构和化学有效分子方面的性能始终很强,在六个指标上进行了评估。通过针对 hDHFR 的配体候选物说明了适用性,并表明从生成集中获得可行活性分子的比例增加了 10%。进行了分子对接和可合成性预测任务,以优先考虑生成的分子,得出潜在的先导化合物。

可用性和实现

源代码可通过 https://github.com/yutongLi1997/CLigOpt-Controllable-Ligand-Design-through-Target-Specific-Optimisation 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2079/11373314/9c724cec45cc/btae396f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验