H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2020397118.
Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data, is a vital task in many fields. We propose a fast and accurate method, manifold-constrained Gaussian process inference (MAGI), for this task. MAGI uses a Gaussian process model over time series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in real experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments.
利用噪声和稀疏数据对通过常微分方程(ODE)表示的非线性动态系统模型进行参数估计,在许多领域都是一项至关重要的任务。我们为此提出了一种快速而精确的方法,即流形约束高斯过程推断(MAGI)。MAGI 使用时间序列数据上的高斯过程模型,明确地受到高斯过程的导数必须满足 ODE 系统的流形约束。通过这种方式,我们完全避免了数值积分的需要,并在计算时间上实现了显著的节省。MAGI 也适用于存在未观测系统组件的推断,这种情况在实际实验中经常出现。MAGI 与现有方法不同,因为我们在贝叶斯框架下提供了一种有原则的统计构建,通过流形约束将 ODE 系统纳入其中。我们使用基于物理实验的实际示例展示了 MAGI 的准确性和速度。