Wang Jen-Hung, Pereda Jorge, Du Ching-Wen, Chu Chia-Yu, Christensen Maria Oberländer, Kezic Sanja, Jakasa Ivone, Thyssen Jacob P, Satheesh Sreeja, Hwu Edwin En-Te
Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae095.
Corneocyte surface nanoscale topography (nanotexture) has recently emerged as a potential biomarker for inflammatory skin diseases, such as atopic dermatitis (AD). This assessment method involves quantifying circular nano-size objects (CNOs) in corneocyte nanotexture images, enabling noninvasive analysis via stratum corneum (SC) tape stripping. Current approaches for identifying CNOs rely on computer vision techniques with specific geometric criteria, resulting in inaccuracies due to the susceptibility of nano-imaging techniques to environmental noise and structural occlusion on the corneocyte.
This study recruited 45 AD patients and 15 healthy controls, evenly divided into 4 severity groups based on their Eczema Area and Severity Index scores. Subsequently, we collected a dataset of over 1,000 corneocyte nanotexture images using our in-house high-speed dermal atomic force microscope. This dataset was utilized to train state-of-the-art deep learning object detectors for identifying CNOs. Additionally, we implemented a kernel density estimator to analyze the spatial distribution of CNOs, excluding ineffective regions with minimal CNO occurrence, such as ridges and occlusions, thereby enhancing accuracy in density calculations. After fine-tuning, our detection model achieved an overall accuracy of 91.4% in detecting CNOs.
By integrating deep learning object detector with spatial analysis algorithms, we developed a precise methodology for calculating CNO density, termed the Effective Corneocyte Topographical Index (ECTI). The ECTI demonstrated exceptional robustness to nano-imaging artifacts and presents substantial potential for advancing AD diagnostics by effectively distinguishing between SC samples of varying AD severity and healthy controls.
角质形成细胞表面纳米级形貌(纳米纹理)最近已成为炎症性皮肤病如特应性皮炎(AD)的一种潜在生物标志物。这种评估方法涉及对角质形成细胞纳米纹理图像中的圆形纳米尺寸物体(CNO)进行量化,从而能够通过角质层(SC)胶带剥离进行非侵入性分析。目前识别CNO的方法依赖于具有特定几何标准的计算机视觉技术,由于纳米成像技术易受环境噪声和角质形成细胞上结构遮挡的影响,导致结果不准确。
本研究招募了45名AD患者和15名健康对照,根据湿疹面积和严重程度指数评分将他们平均分为4个严重程度组。随后,我们使用我们内部的高速真皮原子力显微镜收集了超过1000张角质形成细胞纳米纹理图像的数据集。该数据集用于训练用于识别CNO的先进深度学习目标检测器。此外,我们实施了核密度估计器来分析CNO的空间分布,排除CNO出现最少的无效区域,如脊和遮挡,从而提高密度计算的准确性。经过微调,我们的检测模型在检测CNO方面的总体准确率达到了91.4%。
通过将深度学习目标检测器与空间分析算法相结合,我们开发了一种精确的计算CNO密度的方法,称为有效角质形成细胞地形指数(ECTI)。ECTI对纳米成像伪像表现出非凡的鲁棒性,并通过有效区分不同AD严重程度的SC样本和健康对照,在推进AD诊断方面具有巨大潜力。