Suppr超能文献

使用壳聚糖、硫酸化多糖、水解胶原蛋白和纳米纤维素自组装、自愈合和可注射聚电解质复合水凝胶的绿色合成。

Green synthesis of self-assembly, self-healing, and injectable polyelectrolyte complex hydrogels using chitosan, sulphated polysaccharides, hydrolyzed collagen and nanocellulose.

作者信息

Lin Jianan, Jiao Guangling, Scott Alison J, Xu Chunbao C, Gagnon Graham, Kermanshahi-Pour Azadeh

机构信息

Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada.

AKSO Marine Biotech Inc., Hacketts Cove, Nova Scotia B3Z 3K7, Canada.

出版信息

Int J Biol Macromol. 2025 Feb;288:138566. doi: 10.1016/j.ijbiomac.2024.138566. Epub 2024 Dec 8.

Abstract

This study introduces a green method for preparing self-assembly hydrogels via polyelectrolyte complex (PEC) coacervation using chitosan, sulphated polysaccharides (chondroitin sulphate or fucoidan), and hydrolyzed collagen, followed by treatments, such as centrifugation, nanocellulose incorporation, algal fucoidan substitution, freezing-thawing, saline solution addition, and dialysis. Chitosan alters the non-gelling characteristics of chondroitin sulphate, fucoidan, and hydrolyzed collagen, initiating quick gelling. This study compared the effects of biopolymer concentrations, pHs, and treatments on hydrogel properties. Hydrogels fabricated using sulphated polysaccharides from different sources demonstrated distinct properties. Nanocellulose incorporation significantly modified the hydrogel performance, with hydrogel containing 4 % nanocellulose showing the lowest E-factor (~1 kg waste/kg product), the highest swelling capacity (up to 766 %), robust rheological strength (storage modulus >20 kPa), interconnected fibrous, highly porous structures, and outstanding thermal stabilities (no significant degradation below 200 °C). The hydrogels also exhibited self-healing and injectable potentials. Centrifugation further improved solid-like behaviours through compacting structures and enhancing interactions. Biopolymer concentrations and pHs had minimal impacts on hydrogel properties. The tailored properties resulting from the biopolymer components and treatments indicated the potential for customizing biomaterial functionality for biomedical applications. The eco-friendly synthesis of PEC hydrogels from marine by-products leverages underutilized renewable resources, contributing to a sustainable bioeconomy.

摘要

本研究介绍了一种绿色方法,通过使用壳聚糖、硫酸化多糖(硫酸软骨素或岩藻依聚糖)和水解胶原蛋白的聚电解质复合物(PEC)凝聚来制备自组装水凝胶,随后进行离心、纳米纤维素掺入、海藻岩藻依聚糖替代、冻融、添加盐溶液和透析等处理。壳聚糖改变了硫酸软骨素、岩藻依聚糖和水解胶原蛋白的非凝胶特性,引发快速凝胶化。本研究比较了生物聚合物浓度、pH值和处理对水凝胶性能的影响。使用不同来源的硫酸化多糖制备的水凝胶表现出不同的特性。掺入纳米纤维素显著改变了水凝胶的性能,含有4%纳米纤维素的水凝胶显示出最低的E因子(约1千克废物/千克产品)、最高的溶胀能力(高达766%)、强大的流变强度(储能模量>20千帕)、相互连接的纤维状、高度多孔的结构以及出色的热稳定性(在200°C以下无明显降解)。这些水凝胶还表现出自愈合和可注射的潜力。离心通过压实结构和增强相互作用进一步改善了类固体行为。生物聚合物浓度和pH值对水凝胶性能的影响最小。由生物聚合物成分和处理产生的定制特性表明了为生物医学应用定制生物材料功能的潜力。从海洋副产品中生态友好地合成PEC水凝胶利用了未充分利用的可再生资源,有助于实现可持续生物经济。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验