Hernández-Leal Rocío, Licona-Aguilar Ángeles Iveth, Domínguez-Crespo Miguel Antonio, Ramírez-Meneses Esther, Rodríguez-Salazar Adela Eugenia, Juárez-Balderas Carlos, Brachetti-Sibaja Silvia Beatriz, Torres-Huerta Aidé Minerva
New Materials Department, Instituto Tecnológico de Ciudad Madero, Tecnológico Nacional de México, Ciudad Madero C.P. 89440, Tamaulipas, Mexico.
Biotechnology Department, Unidad Profesional Interdisciplinaria de Ingeniería-Palenque, Instituto Politécnico Nacional, Nueva Esperanza C.P. 29960, Chiapas, Mexico.
Polymers (Basel). 2025 Jun 13;17(12):1642. doi: 10.3390/polym17121642.
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and 50 °C, and reaction times of 30 and 60 min were analyzed during the acid hydrolysis to evaluate changes in the morphology, crystallinity, swelling, degradation temperature, and mechanical properties. The parameters that most influenced the crystallinity were the temperature and reaction time, showing good characteristics such as percentage crystallinity (89.66% for nanocellulose from CtT up to 97.58% for CNC-BPS CtT), and crystal size (from 23.40 to 68.31 nm), which was worth considering for hydrogel synthesis. Cellulose nanocrystalline hydrogels from both biomass wastes can modify the crystallinity for tailored high-end engineering and biomedical applications, although using BPS obtained the best overall performance; also, properties such as swelling capability at = 4 of 225.39% for hydrogel CtT (H7), porosity (60.77 ± 2.60%) for CtT (H6), and gel % (86.60 ± 2.62%) for CtT (H8) were found. The mechanical test revealed a tensile strength at maximum load of 707.67 kPa (hydrogel H6) and 644.17 kPa (hydrogel H8), which are properties conferred by the CNC from BPS. Overall, CNC from BPS is recommended as a reinforcement for hydrogel synthesis due to its good mechanical properties and functionals, making it a promising material for biomedical applications.
这项工作探索了从芦荟渣(AVB)和香蕉假茎(BPS)中合成生物质废弃物衍生的纤维素纳米晶体水凝胶。在酸水解过程中,分析了各种合成参数,如酸浓度(45 wt.% 和55 wt.%)、25、40、45和50°C过程中的温度以及30和60分钟的反应时间,以评估形态、结晶度、溶胀、降解温度和机械性能的变化。对结晶度影响最大的参数是温度和反应时间,其显示出良好的特性,如结晶度百分比(从CtT的纳米纤维素的89.66%到CNC-BPS CtT的97.58%)和晶体尺寸(从23.40到68.31 nm),这对于水凝胶合成来说值得考虑。来自这两种生物质废弃物的纤维素纳米晶体水凝胶可以改变结晶度以用于定制的高端工程和生物医学应用,尽管使用BPS获得了最佳的整体性能;此外,还发现了一些特性,如水凝胶CtT(H7)在 = 4时的溶胀能力为225.39%,CtT(H6)的孔隙率为(60.77 ± 2.60%),CtT(H8)的凝胶百分比为(86.60 ± 2.62%)。力学测试显示,最大负载下的拉伸强度分别为707.67 kPa(水凝胶H6)和644.17 kPa(水凝胶H8),这是由来自BPS的CNC赋予的性能。总体而言,由于其良好的机械性能和功能,来自BPS的CNC被推荐作为水凝胶合成的增强剂,使其成为生物医学应用中有前景的材料。