Suppr超能文献

深度学习揭示了经病理学证实的阿尔茨海默病、血管性痴呆和路易体痴呆的神经影像特征。

Deep learning reveals pathology-confirmed neuroimaging signatures in Alzheimer's, vascular and Lewy body dementias.

作者信息

Wang Di, Honnorat Nicolas, Toledo Jon B, Li Karl, Charisis Sokratis, Rashid Tanweer, Benet Nirmala Anoop, Brandigampala Sachintha Ransara, Mojtabai Mariam, Seshadri Sudha, Habes Mohamad

机构信息

Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA.

出版信息

Brain. 2025 Jun 3;148(6):1963-1977. doi: 10.1093/brain/awae388.

Abstract

Concurrent neurodegenerative and vascular pathologies pose a diagnostic challenge in the clinical setting, with histopathology remaining the definitive modality for dementia-type diagnosis. To address this clinical challenge, we introduce a neuropathology-based, data-driven, multi-label deep-learning framework to identify and quantify in vivo biomarkers for Alzheimer's disease (AD), vascular dementia (VD) and Lewy body dementia (LBD) using antemortem T1-weighted MRI scans of 423 demented and 361 control participants from National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative datasets. Based on the best-performing deep-learning model, explainable heat maps were extracted to visualize disease patterns, and the novel Deep Signature of Pathology Atrophy REcognition (DeepSPARE) indices were developed, where a higher DeepSPARE score indicates more brain alterations associated with that specific pathology. A substantial discrepancy in clinical and neuropathological diagnosis was observed in the demented patients: 71% had more than one pathology, but 67% were diagnosed clinically as AD only. Based on these neuropathological diagnoses and leveraging cross-validation principles, the deep-learning model achieved the best performance, with a balanced accuracy of 0.844, 0.839 and 0.623 for AD, VD and LBD, respectively, and was used to generate the explainable deep-learning heat maps and DeepSPARE indices. The explainable deep-learning heat maps revealed distinct neuroimaging brain alteration patterns for each pathology: (i) the AD heat map highlighted bilateral hippocampal regions; (ii) the VD heat map emphasized white matter regions; and (iii) the LBD heat map exposed occipital alterations. The DeepSPARE indices were validated by examining their associations with cognitive testing and neuropathological and neuroimaging measures using linear mixed-effects models. The DeepSPARE-AD index was associated with Mini-Mental State Examination, the Trail Making Test B, memory, hippocampal volume, Braak stages, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) scores and Thal phases [false-discovery rate (FDR)-adjusted P < 0.05]. The DeepSPARE-VD index was associated with white matter hyperintensity volume and cerebral amyloid angiopathy (FDR-adjusted P < 0.001), and the DeepSPARE-LBD index was associated with Lewy body stages (FDR-adjusted P < 0.05). The findings were replicated in an out-of-sample Alzheimer's Disease Neuroimaging Initiative dataset by testing associations with cognitive, imaging, plasma and CSF measures. CSF and plasma tau phosphorylated at threonine-181 (pTau181) were significantly associated with DeepSPARE-AD in the AD and mild cognitive impairment amyloid-β positive (AD/MCIΑβ+) group (FDR-adjusted P < 0.001), and CSF α-synuclein was associated solely with DeepSPARE-LBD (FDR-adjusted P = 0.036). Overall, these findings demonstrate the advantages of our innovative deep-learning framework in detecting antemortem neuroimaging signatures linked to different pathologies. The newly deep-learning-derived DeepSPARE indices are precise, pathology-sensitive and single-valued non-invasive neuroimaging metrics, bridging the traditional widely available in vivo T1 imaging with histopathology.

摘要

在临床环境中,并发的神经退行性和血管性病变给诊断带来了挑战,组织病理学仍然是痴呆类型诊断的金标准。为应对这一临床挑战,我们引入了一个基于神经病理学、数据驱动的多标签深度学习框架,使用来自国家阿尔茨海默病协调中心和阿尔茨海默病神经影像倡议数据集的423名痴呆患者和361名对照参与者的生前T1加权MRI扫描,来识别和量化阿尔茨海默病(AD)、血管性痴呆(VD)和路易体痴呆(LBD)的体内生物标志物。基于性能最佳的深度学习模型,提取可解释的热图以可视化疾病模式,并开发了新的病理学萎缩识别深度特征(DeepSPARE)指数,其中较高的DeepSPARE分数表明与该特定病理学相关的脑改变更多。在痴呆患者中观察到临床和神经病理学诊断存在显著差异:71%的患者有不止一种病变,但67%在临床上仅被诊断为AD。基于这些神经病理学诊断并利用交叉验证原则,深度学习模型取得了最佳性能,AD、VD和LBD的平衡准确率分别为0.844、0.839和0.623,并用于生成可解释的深度学习热图和DeepSPARE指数。可解释的深度学习热图揭示了每种病理学独特的神经影像脑改变模式:(i)AD热图突出双侧海马区;(ii)VD热图强调白质区;(iii)LBD热图显示枕叶改变。通过使用线性混合效应模型检查DeepSPARE指数与认知测试、神经病理学和神经影像测量的关联来对其进行验证。DeepSPARE-AD指数与简易精神状态检查、连线测验B、记忆力、海马体积、Braak分期、阿尔茨海默病注册协会(CERAD)评分和Thal分期相关[错误发现率(FDR)校正P<0.05]。DeepSPARE-VD指数与白质高信号体积和脑淀粉样血管病相关(FDR校正P<0.001),DeepSPARE-LBD指数与路易体分期相关(FDR校正P<0.05)。通过测试与认知、影像、血浆和脑脊液测量的关联,这些发现在一个样本外的阿尔茨海默病神经影像倡议数据集中得到了重复。在AD和轻度认知障碍淀粉样β阳性(AD/MCIΑβ+)组中,脑脊液和血浆苏氨酸181磷酸化tau(pTau181)与DeepSPARE-AD显著相关(FDR校正P<0.001),脑脊液α-突触核蛋白仅与DeepSPARE-LBD相关(FDR校正P = 0.036)。总体而言,这些发现证明了我们创新的深度学习框架在检测与不同病理学相关的生前神经影像特征方面的优势。新的深度学习衍生的DeepSPARE指数是精确的、病理学敏感的和单值的非侵入性神经影像指标,将传统上广泛可用的体内T1成像与组织病理学联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验