Juéry Caroline, Auladell Adria, Füssy Zoltan, Chevalier Fabien, Yee Daniel P, Pelletier Eric, Corre Erwan, Allen Andrew E, Richter Daniel J, Decelle Johan
Cell and Plant Physiology Laboratory, Unité Mixte de Recherche (UMR) 5168 Centre de l'Energie Atomique (CEA)-Centre national de la recherche scientifique (CNRS)-University Grenoble Alpes- INRAE, 38000, Grenoble, France.
Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae239.
Metabolic exchange is one of the foundations of symbiotic associations between organisms and is a driving force in evolution. In the ocean, photosymbiosis between heterotrophic hosts and microalgae is powered by photosynthesis and relies on the transfer of organic carbon to the host (e.g. sugars). Yet, the identity of transferred carbohydrates as well as the molecular mechanisms that drive this exchange remain largely unknown, especially in unicellular photosymbioses that are widespread in the open ocean. Combining genomics, single-holobiont transcriptomics, and environmental metatranscriptomics, we revealed the transportome of the marine microalga Phaeocystis in symbiosis within acantharia, with a focus on sugar transporters. At the genomic level, the sugar transportome of Phaeocystis is comparable to non-symbiotic haptophytes. By contrast, we found significant remodeling of the expression of the transportome in symbiotic microalgae compared to the free-living stage. More particularly, 36% of sugar transporter genes were differentially expressed. Several of them, such as GLUTs, TPTs, and aquaporins, with glucose, triose-phosphate sugars, and glycerol as potential substrates, were upregulated at the holobiont and community level. We also showed that algal sugar transporter genes exhibit distinct temporal expression patterns during the day. This reprogramed transportome indicates that symbiosis has a major impact on sugar fluxes within and outside the algal cell, and highlights the complexity and the dynamics of metabolic exchanges between partners. This study improves our understanding of the molecular players of the metabolic connectivity underlying the ecological success of planktonic photosymbiosis and paves the way for more studies on transporters across photosymbiotic models.
代谢交换是生物体间共生关系的基础之一,也是进化的驱动力。在海洋中,异养宿主与微藻之间的光合共生由光合作用提供动力,并依赖于有机碳向宿主的转移(如糖类)。然而,所转移碳水化合物的身份以及驱动这种交换的分子机制在很大程度上仍不清楚,尤其是在公海中广泛存在的单细胞光合共生关系中。通过结合基因组学、单细胞共生体转录组学和环境宏转录组学,我们揭示了海洋微藻棕囊藻在与等辐骨虫共生时的转运体组,重点关注糖转运蛋白。在基因组水平上,棕囊藻的糖转运体组与非共生的定鞭藻相当。相比之下,我们发现与自由生活阶段相比,共生微藻的转运体组表达发生了显著重塑。更具体地说,36%的糖转运蛋白基因差异表达。其中一些基因,如葡萄糖转运蛋白、磷酸丙糖转运蛋白和水通道蛋白,以葡萄糖、磷酸丙糖和甘油为潜在底物,在共生体和群落水平上上调。我们还表明,藻类糖转运蛋白基因在白天表现出不同的时间表达模式。这种重新编程的转运体组表明共生对藻类细胞内外的糖通量有重大影响,并突出了共生伙伴之间代谢交换的复杂性和动态性。这项研究增进了我们对浮游光合共生生态成功背后代谢连通性分子参与者的理解,并为跨光合共生模型的转运蛋白更多研究铺平了道路。