Suppr超能文献

MetaPR:一个真核 18S rRNA 代谢条形码数据库,重点是原生生物。

metaPR : A database of eukaryotic 18S rRNA metabarcodes with an emphasis on protists.

机构信息

UMR 7144, ECOMAP, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France.

Asian School of the Environment, Nanyang Technological University, Singapore.

出版信息

Mol Ecol Resour. 2022 Nov;22(8):3188-3201. doi: 10.1111/1755-0998.13674. Epub 2022 Jul 13.

Abstract

In recent years, metabarcoding has become the method of choice for investigating the composition and assembly of microbial eukaryotic communities. The number of environmental data sets published has increased very rapidly. Although unprocessed sequence files are often publicly available, processed data, in particular clustered sequences, are rarely available in a usable format. Clustered sequences are reported as operational taxonomic units (OTUs) with different similarity levels or more recently as amplicon sequence variants (ASVs). This hampers comparative studies between different environments and data sets, for example examining the biogeographical patterns of specific groups/species, as well analysing the genetic microdiversity within these groups. Here, we present a newly-assembled database of processed 18S rRNA metabarcodes that are annotated with the PR reference sequence database. This database, called metaPR , contains 41 data sets corresponding to more than 4000 samples and 90,000 ASVs. The database, which is accessible through both a web-based interface (https://shiny.metapr2.org) and an R package, should prove very useful to all researchers working on protist diversity in a variety of systems.

摘要

近年来,代谢条形码已成为研究微生物真核生物群落组成和组装的首选方法。已发布的环境数据集数量增长非常迅速。尽管未处理的序列文件通常是公开可用的,但处理后的数据,特别是聚类序列,很少以可用的格式提供。聚类序列报告为具有不同相似性水平的分类操作单元 (OTUs),或者最近报告为扩增子序列变体 (ASVs)。这阻碍了不同环境和数据集之间的比较研究,例如检查特定群体/物种的生物地理模式,以及分析这些群体内的遗传微观多样性。在这里,我们展示了一个新组装的 18S rRNA 代谢条形码数据库,该数据库使用 PR 参考序列数据库进行注释。这个名为 metaPR 的数据库包含 41 个数据集,对应于超过 4000 个样本和 90000 个 ASVs。该数据库可通过基于网络的界面(https://shiny.metapr2.org)和 R 包访问,对于所有从事各种系统中原生动物多样性研究的研究人员来说,都将非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba7/9796713/c88601e73410/MEN-22-3188-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验