Yang Hang, Li Li, Chen Duo, Wang Jingyi, Tan Yicheng, Jiang Zhenjing, Zhang Yiming, Miao Chenglin, Zhang Wei, Han Wei, He Guanjie
Department of Chemistry, University College London, London, WC1H 0AJ, UK.
College of Physics, International Center of Future Science, Jilin University, Changchun, 130012, P.R. China.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419394. doi: 10.1002/anie.202419394. Epub 2024 Dec 18.
Compared to near-neutral electrolytes (pH=3-6), Zn||Mn batteries in acidic environments can achieve voltages up to ~2 V. However, high proton concentrations raise concerns about Zn anode stability. Current strategies for inhibiting hydrogen evolution corrosion (HEC) on the anode in Zn-based batteries mainly focus on the near-neutral electrolytes. To supplement this gap, we developed a conversion-type interphase strategy using phosphate, sulfate precipitation, and phytic acid modification layers for Zn anodes to demonstrate the potential of Zn anode to operate in acidic electrolytes. This approach enables stable Zn stripping/plating at pH=2.2 for over 3,600 h and 400 h at 1 mA cm/0.5 mAh cm and 20 mA cm/10 mAh cm. Benefiting from stable Zn electrodes, the electrolytic Zn||Mn batteries can operate at 1.90 V. To show more harsh scenarios, the seawater-based 0.25 Ah-scale Zn||Mn pouch cells can be assembled with a practical energy density of 57.4 Wh kg-1 cell. Significantly, we analyze and emphasize that seawater holds promise as an alternative to deionized water for electrolyte solvents due to its energy and economic effectiveness. This strategy has motivated to expand the working pH range of metal anodes and provides the rational design for grid-scale energy storage technologies.
与近中性电解质(pH = 3 - 6)相比,酸性环境中的锌||锰电池可实现高达约2 V的电压。然而,高质子浓度引发了对锌阳极稳定性的担忧。目前抑制锌基电池阳极析氢腐蚀(HEC)的策略主要集中在近中性电解质上。为了弥补这一差距,我们开发了一种转换型界面策略,通过磷酸盐、硫酸盐沉淀和植酸改性层对锌阳极进行处理,以证明锌阳极在酸性电解质中运行的潜力。这种方法能够在pH = 2.2时实现稳定的锌剥离/电镀,在1 mA cm/0.5 mAh cm和20 mA cm/10 mAh cm的条件下分别持续超过3600小时和400小时。受益于稳定的锌电极,电解锌||锰电池能够在1.90 V下运行。为了展示更苛刻的场景,可以组装基于海水的0.25 Ah规模的锌||锰软包电池,其实际能量密度为57.4 Wh kg-1电池。值得注意的是,我们分析并强调,由于其能源和经济有效性,海水有望成为去离子水作为电解质溶剂的替代品。该策略推动了金属阳极工作pH范围的扩展,并为电网规模的储能技术提供了合理的设计。