文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Automated discovery of experimental designs in super-resolution microscopy with XLuminA.

作者信息

Rodríguez Carla, Arlt Sören, Möckl Leonhard, Krenn Mario

机构信息

Max Planck Institute for the Science of Light, Erlangen, Germany.

Friedrich-Alexander-University Erlangen-Nuremberg, Faculty of Sciences, Department of Physics, Erlangen, Germany.

出版信息

Nat Commun. 2024 Dec 10;15(1):10658. doi: 10.1038/s41467-024-54696-y.


DOI:10.1038/s41467-024-54696-y
PMID:39658575
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11632100/
Abstract

Driven by human ingenuity and creativity, the discovery of super-resolution techniques, which circumvent the classical diffraction limit of light, represent a leap in optical microscopy. However, the vast space encompassing all possible experimental configurations suggests that some powerful concepts and techniques might have not been discovered yet, and might never be with a human-driven direct design approach. Thus, AI-based exploration techniques could provide enormous benefit, by exploring this space in a fast, unbiased way. We introduce XLuminA, an open-source computational framework developed using JAX, a high-performance computing library in Python. XLuminA offers enhanced computational speed enabled by JAX's accelerated linear algebra compiler (XLA), just-in-time compilation, and its seamlessly integrated automatic vectorization, automatic differentiation capabilities and GPU compatibility. XLuminA demonstrates a speed-up of 4 orders of magnitude compared to well-established numerical optimization methods. We showcase XLuminA's potential by re-discovering three foundational experiments in advanced microscopy, and identifying an unseen experimental blueprint featuring sub-diffraction imaging capabilities. This work constitutes an important step in AI-driven scientific discovery of new concepts in optics and advanced microscopy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/95b4979f7480/41467_2024_54696_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/c19b7b3804c5/41467_2024_54696_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/8a51aea7cd92/41467_2024_54696_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/13d77a6a8c6a/41467_2024_54696_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/59a939041f7f/41467_2024_54696_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/f83db901e8ab/41467_2024_54696_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/e7910e1b8195/41467_2024_54696_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/2b14fd7246d2/41467_2024_54696_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/95b4979f7480/41467_2024_54696_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/c19b7b3804c5/41467_2024_54696_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/8a51aea7cd92/41467_2024_54696_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/13d77a6a8c6a/41467_2024_54696_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/59a939041f7f/41467_2024_54696_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/f83db901e8ab/41467_2024_54696_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/e7910e1b8195/41467_2024_54696_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/2b14fd7246d2/41467_2024_54696_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/11632100/95b4979f7480/41467_2024_54696_Fig8_HTML.jpg

相似文献

[1]
Automated discovery of experimental designs in super-resolution microscopy with XLuminA.

Nat Commun. 2024-12-10

[2]
Accelerated linear algebra compiler for computationally efficient numerical models: Success and potential area of improvement.

PLoS One. 2023

[3]
Integrating physical units into high-performance AI-driven scientific computing.

Nat Commun. 2025-4-16

[4]
Accelerating single molecule localization microscopy through parallel processing on a high-performance computing cluster.

J Microsc. 2018-12-3

[5]
Ultra-fast, universal super-resolution radial fluctuations (SRRF) algorithm for live-cell super-resolution microscopy.

Opt Express. 2019-12-23

[6]
Computational Synthetic Biology Enabled through JAX: A Showcase.

ACS Synth Biol. 2024-9-20

[7]
RedLionfish - fast Richardson-Lucy Deconvolution package for efficient point spread function suppression in volumetric data.

Wellcome Open Res. 2024-6-3

[8]
Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework.

Med Phys. 2019-6-30

[9]
Free, flexible and fast: Orientation mapping using the multi-core and GPU-accelerated template matching capabilities in the Python-based open source 4D-STEM analysis toolbox Pyxem.

Ultramicroscopy. 2022-7

[10]
Adaptive optics in super-resolution microscopy.

Biophys Rep. 2021-8-31

引用本文的文献

[1]
An update on recent advances in fluorescent materials for fluorescence molecular imaging: a review.

RSC Adv. 2025-6-30

[2]
NeuroDISK: An AI Approach to Automate Continuous Inquiry-Driven Discoveries in Neuroimaging Genetics.

bioRxiv. 2025-2-19

本文引用的文献

[1]
Scientific discovery in the age of artificial intelligence.

Nature. 2023-8

[2]
On scientific understanding with artificial intelligence.

Nat Rev Phys. 2022

[3]
Deformable mirror based optimal PSF engineering for 3D super-resolution imaging.

Opt Lett. 2022-6-15

[4]
Single-molecule localization microscopy.

Nat Rev Methods Primers. 2021

[5]
Deep physical neural networks trained with backpropagation.

Nature. 2022-1

[6]
Caveat fluorophore: an insiders' guide to small-molecule fluorescent labels.

Nat Methods. 2022-2

[7]
A comparative study on the use of microscopy in pharmacology and cell biology research.

PLoS One. 2021

[8]
Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy.

Light Sci Appl. 2020-10-2

[9]
Computer-Inspired Concept for High-Dimensional Multipartite Quantum Gates.

Phys Rev Lett. 2020-7-31

[10]
The Bouguer-Beer-Lambert Law: Shining Light on the Obscure.

Chemphyschem. 2020-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索