Suppr超能文献

RedLionfish——用于在体数据中高效抑制点扩散函数的快速理查森-露西反卷积软件包。

RedLionfish - fast Richardson-Lucy Deconvolution package for efficient point spread function suppression in volumetric data.

作者信息

Perdigão Luís M A, Berger Casper, Yee Neville B-Y, Darrow Michele C, Basham Mark

机构信息

The Rosalind Franklin Institute, Didcot, OX11 0DE, UK.

出版信息

Wellcome Open Res. 2024 Jun 3;9:296. doi: 10.12688/wellcomeopenres.21505.1. eCollection 2024.

Abstract

The experimental limitations with optics observed in many microscopy and astronomy instruments result in detrimental effects for the imaging of objects. This can be generally described mathematically as a convolution of the real object image with the point spread function that characterizes the optical system. The popular Richardson-Lucy (RL) deconvolution algorithm is widely used for the inverse process of restoring the data without these optical aberrations, often a critical step in data processing of experimental data. Here we present the versatile RedLionfish python package, that was written to make the RL deconvolution of volumetric (3D) data easier to run, very fast (by exploiting GPU computing capabilities) and with automatic handling of hardware limitations for large datasets. It can be used programmatically in Python/numpy using conda or PyPi package managers, or with a graphical user interface as a napari plugin.

摘要

在许多显微镜和天文仪器中观察到的光学实验局限性会对物体成像产生不利影响。这通常可以用数学方法描述为真实物体图像与表征光学系统的点扩散函数的卷积。流行的理查森 - 露西(RL)反卷积算法被广泛用于恢复没有这些光学像差的数据的逆过程,这通常是实验数据处理中的关键步骤。在这里,我们展示了通用的RedLionfish Python包,它的编写目的是使体积(3D)数据的RL反卷积更易于运行、速度非常快(通过利用GPU计算能力),并且能够自动处理大型数据集的硬件限制。它可以使用conda或PyPi包管理器在Python / numpy中以编程方式使用,也可以作为napari插件通过图形用户界面使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9bb/11413554/fff89cae3235/wellcomeopenres-9-23776-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验