Perdigão Luís M A, Berger Casper, Yee Neville B-Y, Darrow Michele C, Basham Mark
The Rosalind Franklin Institute, Didcot, OX11 0DE, UK.
Wellcome Open Res. 2024 Jun 3;9:296. doi: 10.12688/wellcomeopenres.21505.1. eCollection 2024.
The experimental limitations with optics observed in many microscopy and astronomy instruments result in detrimental effects for the imaging of objects. This can be generally described mathematically as a convolution of the real object image with the point spread function that characterizes the optical system. The popular Richardson-Lucy (RL) deconvolution algorithm is widely used for the inverse process of restoring the data without these optical aberrations, often a critical step in data processing of experimental data. Here we present the versatile RedLionfish python package, that was written to make the RL deconvolution of volumetric (3D) data easier to run, very fast (by exploiting GPU computing capabilities) and with automatic handling of hardware limitations for large datasets. It can be used programmatically in Python/numpy using conda or PyPi package managers, or with a graphical user interface as a napari plugin.
在许多显微镜和天文仪器中观察到的光学实验局限性会对物体成像产生不利影响。这通常可以用数学方法描述为真实物体图像与表征光学系统的点扩散函数的卷积。流行的理查森 - 露西(RL)反卷积算法被广泛用于恢复没有这些光学像差的数据的逆过程,这通常是实验数据处理中的关键步骤。在这里,我们展示了通用的RedLionfish Python包,它的编写目的是使体积(3D)数据的RL反卷积更易于运行、速度非常快(通过利用GPU计算能力),并且能够自动处理大型数据集的硬件限制。它可以使用conda或PyPi包管理器在Python / numpy中以编程方式使用,也可以作为napari插件通过图形用户界面使用。