Malhotra Armaan K, Kulkarni Abhaya V, Verhey Leonard H, Reeder Ron W, Riva-Cambrin Jay, Jensen Hailey, Pollack Ian F, McDowell Michael, Rocque Brandon G, Tamber Mandeep S, McDonald Patrick J, Krieger Mark D, Pindrik Jonathan A, Isaacs Albert M, Hauptman Jason S, Browd Samuel R, Whitehead William E, Jackson Eric M, Wellons John C, Hankinson Todd C, Chu Jason, Limbrick David D, Strahle Jennifer M, Kestle John R W
Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
Management and Evaluation, Institute for Health Policy, University of Toronto, Toronto, ON, Canada.
Childs Nerv Syst. 2024 Dec 10;41(1):42. doi: 10.1007/s00381-024-06667-3.
This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) to assess whether inclusion of imaging variables improves prediction performance using machine learning models.
We identified children undergoing first-time ETV for hydrocephalus that were enrolled prospectively at HCRN sites between 200 and 2020. The primary outcome was ETV success 6 months after index surgery. The cohort was randomly divided into training (70%) and testing (30%) datasets. The classic ETVSS variables were used for logistic regression and machine learning models. Predictive performance of each model was evaluated on the testing dataset using area under the receiver operating characteristic curve (AUROC).
There were 752 patients that underwent first time ETV, of which 185 patients (24.6%) experienced ETV failure within 6 months. For aim 1, using the classic ETVSS variables, machine learning models did not outperform logistic regression with AUROC 0.60 (95% CI: 0.52-0.69) for Naïve Bayes (highest machine learning model performance) and 0.68 (95% CI: 0.60-0.76) for logistic regression. After inclusion of imaging features (aim 2), machine learning model prediction improved but remained no better than the above logistic regression with the highest AUROC of 0.67 (95% CI: 0.59-0.75) attained using Naïve Bayes architecture compared to 0.68 (95% CI: 0.59-0.76) for logistic regression.
This contemporary multicenter observational cohort study demonstrated that machine learning modeling strategies did not improve performance of the ETVSS model over logistic regression.
本脑积水临床研究网络(HCRN)研究有两个目标:(1)使用逻辑回归模型将原始的第三脑室造瘘术成功评分(ETVSS)与其他更新的机器学习模型的预测性能进行比较;(2)评估纳入影像变量是否能使用机器学习模型提高预测性能。
我们确定了2000年至2020年间在HCRN各站点前瞻性登记的首次因脑积水接受第三脑室造瘘术的儿童。主要结局是初次手术后6个月的第三脑室造瘘术成功情况。该队列被随机分为训练(70%)和测试(30%)数据集。经典的ETVSS变量用于逻辑回归和机器学习模型。使用受试者操作特征曲线下面积(AUROC)在测试数据集上评估每个模型的预测性能。
有752例患者接受了首次第三脑室造瘘术,其中185例患者(24.6%)在6个月内出现第三脑室造瘘术失败。对于目标1,使用经典的ETVSS变量,机器学习模型的表现并未超过逻辑回归,朴素贝叶斯算法(机器学习模型中表现最佳)的AUROC为0.60(95%CI:0.52 - 0.69),逻辑回归的AUROC为0.68(95%CI:0.60 - 0.76)。纳入影像特征后(目标2),机器学习模型的预测有所改善,但仍不比上述逻辑回归更好,使用朴素贝叶斯架构获得的最高AUROC为0.67(95%CI:0.59 - 0.75),而逻辑回归为0.68(95%CI:0.59 - 0.76)。
这项当代多中心观察性队列研究表明,机器学习建模策略在第三脑室造瘘术成功评分模型的性能方面并未优于逻辑回归。