Wang Rong, Shi Zhongxun, Zhang Yuan, Wei Liangmin, Duan Minghui, Xiao Min, Wang Jin, Chen Suning, Wang Qian, Huang Jianyao, Hu Xiaomei, Mei Jinhong, He Jieyu, Chen Feng, Fan Lei, Yang Guanyu, Shen Wenyi, Wei Yongyue, Li Jianyong
Department of Haematology, Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, Nanjing, China.
Br J Haematol. 2025 Feb;206(2):596-606. doi: 10.1111/bjh.19938. Epub 2024 Dec 10.
The subjectivity of morphological assessment and the overlapping pathological features of different subtypes of myeloproliferative neoplasms (MPNs) make accurate diagnosis challenging. To improve the pathological assessment of MPNs, we developed a diagnosis model (fusion model) based on the combination of bone marrow whole-slide images (deep learning [DL] model) and clinical parameters (clinical model). Thousand and fifty-one MPN and non-MPN patients were divided into the training, internal testing and one internal and two external validation cohorts (the combined validation cohort). In the combined validation cohort, fusion model achieved higher areas under curve (AUCs) than clinical or DL model or both for MPNs and subtype identification. Compared with haematopathologists with different experience, clinical model achieved AUC which was comparable to seniors and higher than juniors (p = 0.0208) for polycythaemia vera. The AUCs of fusion model were comparable to seniors and higher than juniors for essential thrombocytosis (p = 0.0141), prefibrotic primary myelofibrosis (p = 0.0085) and overt primary myelofibrosis (p = 0.0330) identification. In conclusion, the performances of our proposed models are equivalent to senior haematopathologists and better than juniors, providing a new perspective on the utilization of DL algorithms in MPN morphological assessment.
骨髓增殖性肿瘤(MPN)不同亚型的形态学评估具有主观性,且病理特征存在重叠,这使得准确诊断具有挑战性。为了改进MPN的病理评估,我们基于骨髓全切片图像(深度学习[DL]模型)和临床参数(临床模型)的组合开发了一种诊断模型(融合模型)。1051例MPN和非MPN患者被分为训练组、内部测试组以及一个内部和两个外部验证队列(联合验证队列)。在联合验证队列中,对于MPN及其亚型识别,融合模型的曲线下面积(AUC)高于临床模型或DL模型或两者。与不同经验的血液病理学家相比,临床模型在真性红细胞增多症方面的AUC与资深血液病理学家相当且高于初级血液病理学家(p = 0.0208)。在原发性血小板增多症(p = 0.0141)、纤维化前原发性骨髓纤维化(p = 0.0085)和明显原发性骨髓纤维化(p = 0.0330)的识别中,融合模型的AUC与资深血液病理学家相当且高于初级血液病理学家。总之,我们提出的模型的性能与资深血液病理学家相当且优于初级血液病理学家,为DL算法在MPN形态学评估中的应用提供了新的视角。