Suppr超能文献

一种由硫酸盐还原菌介导的新型石墨相氮化碳修饰的生物源马基诺矿,用于在光芬顿过程中促进抗生素的高效吸附和催化降解。

A Novel G-CN Modified Biogenic Mackinawite Mediated by SRB for Boosting Highly Efficient Adsorption and Catalytic Degradation of Antibiotics in Photo-Fenton Process.

作者信息

He Siyu, Wang Xuqian, Tang Langjun, Wang Jiepeng, Chen Jing, Zhang Yongkui

机构信息

Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

出版信息

Small. 2024 Dec 10:e2408723. doi: 10.1002/smll.202408723.

Abstract

FeS-based nanomaterials are widely used in Fenton-like reaction of antibiotics degradation. However, the problems of poor stability and low reusability limit the catalytic efficiency. Herein, the study ingeniously introduced the g-CN into FeS to synthesize g-CN@biogenic FeS (CN-BF-1) nanocomposite with strong interaction of iron ions and "N-pots" by the mediation of sulfate reducing bacteria (SRB). Results indicated the g-CN accelerated SRB metabolism and improved the mineralization and stability of FeS to well-crystallized mackinawite. The CN-BF-1 can efficiently adsorb and degrade antibiotics compared with FeS and g-CN, and bear a broad pH range which further proved the increase of stability. The toxicity studies showed ciprofloxacin (CIP) degradation solution hardly caused ecotoxicity and induced antibiotic resistance genes, while CN-BF-1 can be regenerated by SRB in this solution with chemical and enzymatic reduction of Fe(III)-mud to achieve efficient CIP degradation (99.9%). Finally, the mechanism part showed that CN-BF-1 can activate HO to form O and •OH which played the main roles in the catalysis process. The work paves the way for a novel approach to intensify iron-based photo-Fenton system in sustainable remediation of antibiotic wastewater, upon which the high-efficiency removal and non-toxic degradation solution of antibiotic contamination are expected.

摘要

基于硫化亚铁的纳米材料被广泛应用于抗生素降解的类芬顿反应。然而,稳定性差和可重复使用性低的问题限制了其催化效率。在此,该研究巧妙地将石墨相氮化碳引入到硫化亚铁中,通过硫酸盐还原菌(SRB)的介导,合成了具有铁离子与“N 位点”强相互作用的石墨相氮化碳@生物源硫化亚铁(CN-BF-1)纳米复合材料。结果表明,石墨相氮化碳加速了硫酸盐还原菌的代谢,提高了硫化亚铁的矿化程度和稳定性,使其结晶为良好的马基诺矿。与硫化亚铁和石墨相氮化碳相比,CN-BF-1 能够高效吸附和降解抗生素,并且具有较宽的 pH 范围,这进一步证明了其稳定性的提高。毒性研究表明,环丙沙星(CIP)降解溶液几乎不会引起生态毒性和诱导抗生素抗性基因,而 CN-BF-1 可以在该溶液中通过硫酸盐还原菌将 Fe(III)-泥进行化学和酶促还原再生,从而实现高效的 CIP 降解(99.9%)。最后,机理部分表明,CN-BF-1 可以激活过氧化氢形成超氧阴离子和羟基自由基,它们在催化过程中起主要作用。这项工作为强化铁基光芬顿系统用于抗生素废水的可持续修复开辟了一条新途径,有望实现抗生素污染的高效去除和无毒降解溶液的产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验