Shen Jiadong, Chen Junjie, Xu Xiaosa, Li Jin, Wang Zhenyu, Wang Yu, Lin Pengzhu, Sun Jing, Huang Baoling, Zhao Tianshou
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419367. doi: 10.1002/anie.202419367. Epub 2024 Dec 17.
Regulating lithium salt dissociation kinetics by enhancing the interaction between inorganic fillers and lithium salts is vital for enhancing the ionic conductivity in solid-state composite polymer electrolytes (CPEs). However, the influence of fillers' external electronic environments on lithium salt dissociation dynamics remains unclear. Here, we design single-atom sites in metal-organic framework fillers for poly(ethylene oxide) (PEO)-based CPEs, boosting lithium salt dissociation through an electrocatalytic strategy. This strategy enhances lithium-ion conductivity by tuning the coupling strength between the d and p orbitals of the fillers, as captured by a newly identified descriptor (λ) via high-throughput density functional theory (DFT) calculations and machine learning. The optimal single atom (Ti) sites are incorporated into a ZIF-8 matrix for PEO-based CPEs, achieving an ionic conductivity exceeding 10 S cm at 30 °C. Additionally, the electrolyte forms a robust solid electrolyte interphase and is compatible with LiCoO, LiNiCoMn0.05O, and sulfur cathodes. Consequently, the solid-state lithium metal battery with the electrolyte demonstrates excellent cycling stability, maintaining performance over 5000 cycles at 10 C with LiFePO4 cathodes and stable operation at -30 °C. These findings highlight the transformative potential of engineering d-p orbital hybridization by incorporating single-atom sites into inorganic fillers for designing highly ion-conductive CPEs.
通过增强无机填料与锂盐之间的相互作用来调节锂盐解离动力学,对于提高固态复合聚合物电解质(CPEs)的离子电导率至关重要。然而,填料的外部电子环境对锂盐解离动力学的影响仍不明确。在此,我们为基于聚环氧乙烷(PEO)的CPEs在金属有机框架填料中设计单原子位点,通过电催化策略促进锂盐解离。该策略通过调整填料的d轨道和p轨道之间的耦合强度来提高锂离子电导率,这是通过高通量密度泛函理论(DFT)计算和机器学习新确定的描述符(λ)捕捉到的。将最佳单原子(Ti)位点引入基于PEO的CPEs的ZIF-8基质中,在30℃下实现了超过10 S cm的离子电导率。此外,该电解质形成了坚固的固体电解质界面,并且与LiCoO、LiNiCoMn0.05O和硫阴极兼容。因此,使用该电解质的固态锂金属电池表现出优异的循环稳定性,在10 C下使用LiFePO4阴极时可保持超过5000次循环的性能,并且在-30℃下稳定运行。这些发现突出了通过将单原子位点引入无机填料来设计高度离子导电的CPEs,进行d-p轨道杂化工程的变革潜力。