Xu Xiaosa, Chen Junjie, Li Jin, Shen Jiadong, Lin Pengzhu, Wang Zhenyu, Guo Zixiao, Sun Jing, Huang Baoling, Zhao Tianshou
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
J Am Chem Soc. 2025 Jul 23;147(29):25896-25909. doi: 10.1021/jacs.5c08267. Epub 2025 Jul 11.
Concentration polarization-triggered dendrite growth hinders the practical application of solid-state polymer lithium batteries, which is caused by the uncontrolled anion migration in conventional dual-ion electrolytes. Single-ion conductive polymer electrolytes (SICPEs) offer a promise to mitigate dendrite growth via reducing concentration polarization and prohibiting salt depletion, yet they are highly challenging for successful implementation due to their narrow electrochemical window and poor ionic conductivity, which result from the deficient dissociation of Li polyanions and sluggish chain relaxation. Here, a cyano-containing covalent organic framework (COF) is designed to fuse with SICPEs, promising fast Li transport and remarkable interfacial stability toward high-voltage lithium-metal batteries. The electron-withdrawing cyano group on the COF facilitates the dissociation of the polyanions via ion-dipole interactions, resulting in more free-moving Li. Rapid ion migration then occurs along the long-range cooperative ion transport pathways between the COF and SICPE. Additionally, the cyano group robustly bonds with transition metal ions of NCM cathodes to inhibit the catalytic decomposition of SICPE and guarantee the structural integrity of NCM. Hence, the as-prepared SICPE exhibits a significantly enhanced ionic conductivity of 9.2 × 10 S cm and an improved Li transference number of 0.94 at room temperature. Accordingly, the NCM622||Li quasi-solid-state cell achieves an exceptional capacity retention of 92.0% over 1000 cycles at 0.5 C, while the cell pairing with the 4.8 V NCM622 cathode delivers a remarkable capacity of 149.5 mAh g after 200 cycles at 0.5 C. This study provides a new perspective for facilitating ionic conductivity and interface chemistry toward the practical feasibility of single-ion conductive polymer electrolytes.
浓差极化引发的枝晶生长阻碍了固态聚合物锂电池的实际应用,这是由传统双离子电解质中不受控制的阴离子迁移引起的。单离子导电聚合物电解质(SICPEs)有望通过降低浓差极化和防止盐耗尽来减轻枝晶生长,但由于其狭窄的电化学窗口和较差的离子电导率,成功应用面临巨大挑战,这是由锂多阴离子解离不足和链松弛缓慢导致的。在此,设计了一种含氰基的共价有机框架(COF)与SICPEs融合,有望实现快速的锂传输以及对高压锂金属电池具有显著的界面稳定性。COF上的吸电子氰基通过离子-偶极相互作用促进多阴离子的解离,从而产生更多可自由移动的锂。然后,快速的离子迁移沿着COF和SICPE之间的长程协同离子传输路径发生。此外,氰基与NCM阴极的过渡金属离子牢固结合,以抑制SICPE的催化分解并保证NCM的结构完整性。因此,所制备的SICPE在室温下表现出显著增强的离子电导率,达到9.2×10 S cm,锂迁移数提高到0.94。相应地,NCM622||Li准固态电池在0.5 C下1000次循环后实现了92.0%的优异容量保持率,而与4.8 V NCM622阴极配对的电池在0.5 C下200次循环后提供了149.5 mAh g的显著容量。这项研究为促进离子电导率和界面化学以实现单离子导电聚合物电解质的实际可行性提供了新的视角。