Jiang Chao, Wang Kaihang, Zhang Luwei, Zhang Chunfang, Wang Ning
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
College of Chemistry and Materials Science, Hebei Key Laboratory of Analytical Science and Technology, Hebei University, Baoding, 071002, People's Republic of China.
Nanomicro Lett. 2025 May 21;17(1):267. doi: 10.1007/s40820-025-01790-5.
Low ionic conductivity is a major obstacle for polymer solid-state electrolytes. In response to this issue, a design concept of enhanced regional electric potential difference (EREPD) is proposed to modulate the interaction of nanofillers with other components in the composite polymer solid-state electrolytes (CPSEs). While ensuring the periodic structure of the graphdiyne (GDY) backbone, methoxy-substituted GDY (OGDY) is prepared by an asymmetric substitution strategy, which increases the electric potential differences within each repeating unit of GDY. The staggered distributed electron-rich regions and electron-deficient regions on the two-dimensional plane of OGDY increase the free Li concentration through Lewis acid-base pair interaction. The adjacent ERRs and EDRs form uniformly distributed EREPDs, creating a continuous potential gradient that synergistically facilitates the efficient migration of Li. Impressively, the OGDY/poly(ethylene oxide) (PEO) exhibits a high ionic conductivity (1.1 × 10 S cm) and ion mobility number (0.71). In addition, the accelerated Li migration promotes the formation of uniform and dense SEI layers and inhibits the growth of lithium dendrites. As a proof of concept, Li||Li symmetric cell and Li||LiFePO full cell and pouch cell assembled with OGDY/PEO exhibit good performance, highlighting the effectiveness of our EREPD design strategy for improving CPSEs performance.
低离子电导率是聚合物固态电解质的主要障碍。针对这一问题,提出了一种增强区域电势差(EREPD)的设计概念,以调节复合聚合物固态电解质(CPSEs)中纳米填料与其他组分之间的相互作用。在确保石墨炔(GDY)骨架周期性结构的同时,通过不对称取代策略制备了甲氧基取代的GDY(OGDY),这增加了GDY每个重复单元内的电势差。OGDY二维平面上交错分布的富电子区域和缺电子区域通过路易斯酸碱对相互作用提高了自由Li+浓度。相邻的ERRs和EDRs形成均匀分布的EREPDs,产生连续的电势梯度,协同促进Li+的高效迁移。令人印象深刻的是,OGDY/聚环氧乙烷(PEO)表现出高离子电导率(1.1×10-4 S cm-1)和离子迁移数(0.71)。此外,加速的Li+迁移促进了均匀致密的SEI层的形成,并抑制了锂枝晶的生长。作为概念验证,采用OGDY/PEO组装的Li||Li对称电池、Li||LiFePO4全电池和软包电池表现出良好的性能,突出了我们的EREPD设计策略在提高CPSEs性能方面的有效性。