Albiges Timothy, Sabeur Zoheir, Arbab-Zavar Banafshe
Department of Computing and Informatics, Bournemouth University, Bournemouth, UK.
Digit Health. 2024 Dec 10;10:20552076241302234. doi: 10.1177/20552076241302234. eCollection 2024 Jan-Dec.
To develop and evaluate innovative methods for compressing and reconstructing complex audio signals from medical auscultation, while maintaining diagnostic integrity and reducing dimensionality for machine classification.
Using the ICBHI Respiratory Challenge 2017 Database, we assessed various compression frameworks, including discrete Fourier transform with peak detection, time-frequency transforms, dictionary learning and singular value decomposition. Reconstruction quality was evaluated using mean squared error (MSE). The study has been conducted at Bournemouth University from January 2023 to 2024.
The multi-resolution wavelet transform (MRWT) framework demonstrated superior performance with the lowest average MSE score of 0.037. The proposed time-frequency framework with MRWT achieved 80% accuracy in distinguishing chronic obstructive pulmonary disease from healthy samples.
Our study advances signal processing in medical auscultation, while it offers insights into effective compression and reconstruction methods for preserving diagnostic information. The MRWT approach shows promising outcomes for balancing compression efficiency and reconstruction accuracy in complex audio signals.
开发并评估用于压缩和重建医学听诊复杂音频信号的创新方法,同时保持诊断完整性并降低维度以用于机器分类。
使用2017年ICBHI呼吸挑战数据库,我们评估了各种压缩框架,包括带峰值检测的离散傅里叶变换、时频变换、字典学习和奇异值分解。使用均方误差(MSE)评估重建质量。该研究于2023年1月至2024年在伯恩茅斯大学进行。
多分辨率小波变换(MRWT)框架表现出卓越性能,平均MSE得分最低,为0.037。所提出的带有MRWT的时频框架在区分慢性阻塞性肺疾病与健康样本方面达到了80%的准确率。
我们的研究推动了医学听诊中的信号处理,同时为保留诊断信息的有效压缩和重建方法提供了见解。MRWT方法在平衡复杂音频信号的压缩效率和重建准确性方面显示出有前景的结果。