Lambert Daniel S, O'Regan David D
School of Physics, SFI AMBER Centre and CRANN Institute, Trinity College Dublin, The University of Dublin Ireland
RSC Adv. 2024 Dec 10;14(52):38645-38659. doi: 10.1039/d4ra07774a. eCollection 2024 Dec 3.
Recent advances have shown that first-principles DFT+ techniques, such as DFT++ with parameters from linear response, are capable of high bandgap accuracy in transition metal oxides at a fraction of the computational cost of hybrid functionals. Extending the use of these functionals to defect calculations could save computational resources, but there is limited knowledge on whether such techniques are capable of reliably modelling defect energies. Furthermore, the use of separate and values for the same atomic species in different chemical environments, within the same system, can introduce significant errors into formation energy calculations. In this work, for ZrO, HfO, and TiO we compare calculated defect properties for PBE, DFT++, and prior results from the literature. For ZrO and HfO we identify three different practical methods that address the environment-dependent and value problem acceptably well, unlike the default naïve approach that yields unphysical defect formation energies. Our proposed techniques all yield formation energies, transition levels and defect concentration predictions that, while not identical to each other, are qualitatively in line with literature values. In TiO, the formation energies are reasonably accurate, yet the localisation behaviour differs from that of the most reliable literature comparators, indicating a remaining difficulty for DFT++ with shallow defect levels.
最近的进展表明,第一性原理密度泛函理论(DFT)+ 技术,例如具有来自线性响应参数的DFT++,能够以混合泛函计算成本的一小部分在过渡金属氧化物中实现高带隙精度。将这些泛函的使用扩展到缺陷计算可以节省计算资源,但对于此类技术是否能够可靠地模拟缺陷能量,人们了解有限。此外,在同一系统的不同化学环境中,对同一原子种类使用单独的 和 值,可能会在形成能计算中引入显著误差。在这项工作中,对于ZrO、HfO和TiO,我们比较了PBE、DFT++的计算缺陷性质以及文献中的先前结果。对于ZrO和HfO,我们确定了三种不同的实用方法,这些方法能够较好地解决与环境相关的 和 值问题,这与默认的简单方法不同,后者会产生不符合实际的缺陷形成能。我们提出的技术都能得出形成能、跃迁能级和缺陷浓度预测,虽然彼此并不相同,但在定性上与文献值一致。在TiO中,形成能相当准确,但局域化行为与最可靠的文献比较对象不同,这表明对于具有浅缺陷能级的DFT++仍存在困难。