NuInsSeg:H&E 染色组织学图像中细胞核实例分割的完全标注数据集。
NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images.
机构信息
Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria.
Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria.
出版信息
Sci Data. 2024 Mar 14;11(1):295. doi: 10.1038/s41597-024-03117-2.
In computational pathology, automatic nuclei instance segmentation plays an essential role in whole slide image analysis. While many computerized approaches have been proposed for this task, supervised deep learning (DL) methods have shown superior segmentation performances compared to classical machine learning and image processing techniques. However, these models need fully annotated datasets for training which is challenging to acquire, especially in the medical domain. In this work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent the parts of the images where precise and deterministic manual annotations are impossible, even for human experts. The dataset and detailed step-by-step instructions to generate related segmentation masks are publicly available on the respective repositories.
在计算病理学中,自动核实例分割在全幻灯片图像分析中起着至关重要的作用。虽然已经提出了许多计算机化方法来完成这项任务,但与经典的机器学习和图像处理技术相比,基于监督的深度学习 (DL) 方法显示出了更优越的分割性能。然而,这些模型需要完全标注的数据集进行训练,而这在医学领域是具有挑战性的。在这项工作中,我们发布了一个最大的、完全手动标注的苏木精和伊红(H&E)染色组织学图像核数据集,称为 NuInsSeg。该数据集包含 665 个图像块,以及来自 31 个人类和小鼠器官的超过 30000 个手动分割核。此外,我们首次为整个数据集提供了额外的模糊区域掩模。这些模糊区域表示图像的某些部分,即使是人类专家也无法进行精确和确定的手动标注。数据集和生成相关分割掩模的详细分步说明可在相应的存储库中获得。