Singh Ajay Vikram, Bhardwaj Preeti, Laux Peter, Pradeep Prachi, Busse Madleen, Luch Andreas, Hirose Akihiko, Osgood Christopher J, Stacey Michael W
Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
Front Toxicol. 2024 Nov 26;6:1461587. doi: 10.3389/ftox.2024.1461587. eCollection 2024.
Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.
化学风险评估通过评估与化学物质暴露相关的潜在危害和风险,在保障公众健康和环境安全方面发挥着关键作用。近年来,人工智能(AI)、机器学习(ML)和组学技术的融合彻底改变了化学风险评估领域,为毒性机制、预测建模和风险管理策略提供了新的见解。这篇观点综述探讨了AI/ML和组学在解读致断裂剂诱导的基因组不稳定以进行致癌风险预测方面的协同潜力。我们概述了将AI/ML和组学技术整合用于化学风险评估的关键发现、挑战和机遇,重点介绍了不同领域的成功应用和案例研究。从预测遗传毒性和诱变性到阐明致癌作用的分子途径,综合方法为理解化学物质暴露和减轻相关健康风险提供了一个全面的框架。讨论了通过数据整合、先进的机器学习技术、转化研究和政策实施推进化学风险评估和癌症预防的未来前景。通过发挥AI/ML和组学技术的预测能力,研究人员和政策制定者可以加强公共卫生保护,为监管决策提供信息,并促进可持续发展,以实现更健康的未来。