Suppr超能文献

用于有限数据污水质量评估的增强机器学习

Augmented machine learning for sewage quality assessment with limited data.

作者信息

Lv Jia-Qiang, Yin Wan-Xin, Xu Jia-Min, Cheng Hao-Yi, Li Zhi-Ling, Yang Ji-Xian, Wang Ai-Jie, Wang Hong-Cheng

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.

School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.

出版信息

Environ Sci Ecotechnol. 2024 Nov 17;23:100512. doi: 10.1016/j.ese.2024.100512. eCollection 2025 Jan.

Abstract

Physical, chemical, and biological processes within sewers significantly alter sewage composition during conveyance. This leads to the formation of sulfide and methane-compounds that contribute to sewer corrosion and greenhouse gas emissions. Reliable modeling of these compounds is essential for effective sewer management, but the development of machine learning (ML) models is hindered by differences in data accessibility and sampling frequencies of water quality variables. Here we present a mechanistically enhanced hybrid (ME-Hybrid) model that combines mechanistic modeling with data-driven approaches. This model harmonizes datasets with varying sampling frequencies and generates synthetic samples for ML training, thereby enhancing the monitoring of methane and sulfide in sewers. The optimal ME-Hybrid model integrates the backpropagation neural network with mechanistic frequency harmonization. We demonstrate that the ME-Hybrid model outperforms pure ML and linear interpolation in capturing fluctuating trends and extremes of sulfide concentrations, achieving a coefficient of determination (R) of 0.94. Synthetic samples generated through mechanistic augmentation closely approximate real samples in modeling performance, statistical distribution, and data structure. This enables the model to maintain high predictive accuracy (R > 0.76) for sulfide even when trained on only 50 % of the dataset. Additionally, the ME-Hybrid model successfully assesses sewer methane concentrations with an R of 0.94, validating its applicability and generalization ability. Our results provide a reliable methodological framework for modeling and prediction under data scarcity. By facilitating better monitoring and management of sewer systems, the ME-Hybrid model aids in the development of strategies that minimize environmental impacts, enhance urban resilience, and ultimately lead to sustainable urban water systems.

摘要

下水道中的物理、化学和生物过程在污水输送过程中会显著改变污水成分。这会导致形成硫化物和甲烷化合物,进而造成下水道腐蚀和温室气体排放。对这些化合物进行可靠建模对于有效的下水道管理至关重要,但机器学习(ML)模型的开发受到水质变量数据可获取性和采样频率差异的阻碍。在此,我们提出一种机械增强混合(ME-Hybrid)模型,该模型将机械建模与数据驱动方法相结合。此模型可协调具有不同采样频率的数据集,并生成用于ML训练的合成样本,从而加强对下水道中甲烷和硫化物的监测。最优的ME-Hybrid模型将反向传播神经网络与机械频率协调相结合。我们证明,ME-Hybrid模型在捕捉硫化物浓度的波动趋势和极值方面优于纯ML模型和线性插值法,决定系数(R)达到0.94。通过机械增强生成的合成样本在建模性能、统计分布和数据结构方面与真实样本非常接近。这使得该模型即使仅在50%的数据集上进行训练,对硫化物的预测准确率仍能保持较高水平(R > 0.76)。此外,ME-Hybrid模型成功评估了下水道甲烷浓度,R值为0.94,验证了其适用性和泛化能力。我们的结果为数据稀缺情况下的建模和预测提供了一个可靠的方法框架。通过促进对下水道系统进行更好的监测和管理,ME-Hybrid模型有助于制定将环境影响降至最低、增强城市韧性并最终实现城市水系统可持续发展的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/11629219/5630729d106a/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验