Suppr超能文献

基于机器学习的胃癌肝转移患者预后及治疗决策动态预测模型

Machine learning-based dynamic predictive models for prognosis and treatment decisions in patients with liver metastases from gastric cancer.

作者信息

Wang Zhiqiang, Jia Xingqing, Yang Yukun, Meng Ning, Wang Le, Zheng Jie, Xu Yuanqing

机构信息

Department of General Surgery, Shijiazhuang People's Hospital Shijiazhuang 050000, Hebei, China.

Department of Digestive, Jinan City People's Hospital Jinan 271100, Shandong, China.

出版信息

Am J Cancer Res. 2024 Nov 25;14(11):5521-5538. doi: 10.62347/MTBM7462. eCollection 2024.

Abstract

Gastric cancer with liver metastasis (GCLM) often has a poor prognosis. Therefore, it is crucial to identify risk factors affecting their overall survival (OS) and cancer-specific survival (CSS). This study aimed to construct practical machine learning models to predict survival time and help clinicians choose appropriate treatments. We reviewed the clinical and survival data of GCLM patients from 2010 to 2017 in the Surveillance, Epidemiology, and End Results (SEER) databases and divided the patients into training and testing groups. The risk factors affecting OS and CSS were determined by least absolute shrinkage and selector operator (LASSO), univariate cox regression, best subset regression (BSR) and the stepwise backward regression. Then, five machine learning models, including random survival forest (RSF), Gradient Boosting Machine (GBM), the Cox proportional hazard (CPH), Survival Support Vector Machine (survivalSVM), and eXtreme Gradient Boosting (XGBoost), were built using the identified risk factors. The model with the best predictive ability was determined using concordance index (c-index), area under the curve (AUC), brier score, and decision curve analysis (DCA), and externally verified with data from 233 cases diagnosed with liver metastasis of cancer from The Shijiazhuang People's Hospital, Jinan City People's Hospital, and The Sixth People's Hospital of Huizhou from 2017 to 2018. The study involved a total of 1300 GCLM patients. The prognostic risk factors affecting OS and CSS were the same, including grade, histology, T stage, N stage, surgery, and chemotherapy. The XGBoost model was found to have the best predictive ability for OS, with AUC of 0.891 [95% CI 0.841-0.941], brier score of 0.061 [95% CI 0.046-0.076], and c-index of 0.752 [95% CI 0.742-0.761], as well as for CSS, with AUC of 0.895 [95% CI 0.848-0.942], brier score of 0.064 [95% CI 0.050-0.079], and c-index of 0.746 [95% CI 0.736-0.756]. The AUC score, brier score and c-index all illustrated the accuracy of the model, and the validation using the external datasets further confirmed the reliability of the model. Therefore, the XGBoost model demonstrated significant potential in predicting survival times and selecting appropriate treatment plans.

摘要

伴有肝转移的胃癌(GCLM)通常预后较差。因此,识别影响其总生存期(OS)和癌症特异性生存期(CSS)的风险因素至关重要。本研究旨在构建实用的机器学习模型来预测生存时间,并帮助临床医生选择合适的治疗方法。我们回顾了监测、流行病学和最终结果(SEER)数据库中2010年至2017年GCLM患者的临床和生存数据,并将患者分为训练组和测试组。通过最小绝对收缩和选择算子(LASSO)、单变量Cox回归、最佳子集回归(BSR)和逐步向后回归确定影响OS和CSS的风险因素。然后,使用识别出的风险因素建立了五个机器学习模型,包括随机生存森林(RSF)、梯度提升机(GBM)、Cox比例风险模型(CPH)、生存支持向量机(survivalSVM)和极端梯度提升(XGBoost)。使用一致性指数(c-index)、曲线下面积(AUC)、Brier评分和决策曲线分析(DCA)确定具有最佳预测能力的模型,并使用来自石家庄市人民医院、济南市人民医院和惠州市第六人民医院2017年至2018年诊断为癌症肝转移的233例病例的数据进行外部验证。该研究共纳入1300例GCLM患者。影响OS和CSS的预后风险因素相同,包括分级、组织学、T分期、N分期、手术和化疗。发现XGBoost模型对OS具有最佳预测能力,AUC为0.891 [95%CI 0.841 - 0.941],Brier评分为0.061 [95%CI 0.046 - 0.076],c-index为0.752 [95%CI 0.742 - 0.761];对CSS也具有最佳预测能力,AUC为0.895 [95%CI 0.848 - 0.942],Brier评分为0.064 [95%CI 0.050 - 0.079],c-index为0.746 [95%CI 0.736 - 0.756]。AUC评分、Brier评分和c-index均说明了模型的准确性,使用外部数据集进行的验证进一步证实了模型的可靠性。因此,XGBoost模型在预测生存时间和选择合适的治疗方案方面显示出巨大潜力

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验