Suppr超能文献

基于 SEER 数据库的深度学习预测模型在胃肠道间质瘤预后预测中的应用研究。

The development of a prediction model based on deep learning for prognosis prediction of gastrointestinal stromal tumor: a SEER-based study.

机构信息

Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.

出版信息

Sci Rep. 2024 Mar 19;14(1):6609. doi: 10.1038/s41598-024-56701-2.

Abstract

Accurately predicting the prognosis of Gastrointestinal stromal tumor (GIST) patients is an important task. The goal of this study was to create and assess models for GIST patients' survival patients using the Surveillance, Epidemiology, and End Results Program (SEER) database based on the three different deep learning models. Four thousand five hundred thirty-eight patients were enrolled in this study and divided into training and test cohorts with a 7:3 ratio; the training cohort was used to develop three different models, including Cox regression, RSF, and DeepSurv model. Test cohort was used to evaluate model performance using c-index, Brier scores, calibration, and the area under the curve (AUC). The net benefits at risk score stratification of GIST patients based on the optimal model was compared with the traditional AJCC staging system using decision curve analysis (DCA). The clinical usefulness of risk score stratification compared to AJCC tumor staging was further assessed using the Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI). The DeepSurv model predicted cancer-specific survival (CSS) in GIST patients showed a higher c-index (0.825), lower Brier scores (0.142), and greater AUC of receiver operating characteristic (ROC) analysis (1-year ROC:0.898; 3-year:0.853, and 5-year ROC: 0.856). The calibration plots demonstrated good agreement between the DeepSurv model's forecast and actual results. The NRI values ( training cohort: 0.425 for 1-year, 0.329 for 3-year and 0.264 for 5-year CSS prediction; test cohort:0.552 for 1-year,0.309 for 3-year and 0.255 for 5-year CSS prediction) and IDI (training cohort: 0.130 for 1-year,0.141 for 5-year and 0.155 for 10-year CSS prediction; test cohort: 0.154 for 1-year,0.159 for 3-year and 0.159 for 5-year CSS prediction) indicated that the risk score stratification performed significantly better than the AJCC staging alone (P < 0.001). DCA demonstrated the risk score stratification as more clinically beneficial and discriminatory than AJCC staging. Finally, an interactive native web-based prediction tool was constructed for the survival prediction of GIST patients. This study established a high-performance prediction model for projecting GIST patients based on deep learning, which has advantages in predicting each person's prognosis and risk stratification.

摘要

准确预测胃肠道间质瘤(GIST)患者的预后是一项重要任务。本研究的目的是使用基于 Surveillance, Epidemiology, and End Results Program(SEER)数据库的三种不同深度学习模型为 GIST 患者的生存患者创建和评估模型。本研究共纳入 4538 例患者,按照 7:3 的比例分为训练和测试队列;训练队列用于开发三种不同的模型,包括 Cox 回归、RSF 和 DeepSurv 模型。使用 C 指数、Brier 评分、校准和曲线下面积(AUC)评估测试队列中模型的性能。基于最优模型,对 GIST 患者进行风险评分分层,并与传统的 AJCC 分期系统进行决策曲线分析(DCA)比较。使用净重新分类指数(NRI)和综合鉴别改善指数(IDI)进一步评估风险评分分层与 AJCC 肿瘤分期的临床相关性。DeepSurv 模型预测 GIST 患者的癌症特异性生存率(CSS)具有更高的 C 指数(0.825)、更低的 Brier 评分(0.142)和更大的接收者操作特征(ROC)分析 AUC(1 年 ROC:0.898;3 年:0.853,5 年 ROC:0.856)。校准图表明,DeepSurv 模型的预测结果与实际结果之间具有良好的一致性。NRI 值(训练队列:1 年的 0.425、3 年的 0.329 和 5 年的 CSS 预测;测试队列:1 年的 0.552、3 年的 0.309 和 5 年的 CSS 预测)和 IDI(训练队列:1 年的 0.130、5 年的 0.141 和 10 年的 CSS 预测;测试队列:1 年的 0.154、3 年的 0.159 和 5 年的 CSS 预测)表明,风险评分分层明显优于 AJCC 分期(P<0.001)。DCA 表明,风险评分分层比 AJCC 分期更具临床获益和鉴别力。最后,构建了一个用于 GIST 患者生存预测的交互式原生网络预测工具。本研究建立了一种基于深度学习的高性能 GIST 患者预测模型,该模型在预测每个人的预后和风险分层方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce49/10951333/c2a55f1d818d/41598_2024_56701_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验