Martin Noah, Bernat Tatum, Dinasquet Julie, Stofko Andrea, Damon April, Deheyn Dimitri D, Azam Farooq, Smith Jennifer E, Davey Matthew P, Smith Alison G, Vignolini Silvia, Wangpraseurt Daniel
Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA.
Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
J Appl Phycol. 2021 Oct;33(5):2805-2815. doi: 10.1007/s10811-021-02528-7. Epub 2021 Jul 15.
Photosynthetic microalgae are an attractive source of food, fuel, or nutraceuticals, but commercial production of microalgae is limited by low spatial efficiency. In the present study we developed a simple photosynthetic hydrogel system that cultivates the green microalga, KAS603, together with a novel strain of the bacteria, sp. We tested the performance of the co-culture in the hydrogel using a combination of chlorophyll- fluorimetry, microsensing, and bio-optical measurements. Our results showed that growth rates in algal-bacterial hydrogels were about threefold enhanced compared to hydrogels with algae alone. Chlorophyll- fluorimetry-based light curves found that electron transport rates were enhanced about 20% for algal-bacterial hydrogels compared to algal hydrogels for intermediate irradiance levels. We also show that the living hydrogel is stable under different environmental conditions and when exposed to natural seawater. Our study provides a potential bio-inspired solution for problems that limit the space-efficient cultivation of microalgae for biotechnological applications.
光合微藻是一种有吸引力的食物、燃料或营养保健品来源,但微藻的商业化生产受到空间效率低下的限制。在本研究中,我们开发了一种简单的光合水凝胶系统,用于培养绿色微藻KAS603以及一种新型细菌菌株sp.。我们使用叶绿素荧光测定法、微传感和生物光学测量相结合的方法,测试了水凝胶中共培养的性能。我们的结果表明,与仅含有藻类的水凝胶相比,藻菌水凝胶中的生长速率提高了约三倍。基于叶绿素荧光测定法的光曲线发现,在中等辐照度水平下,藻菌水凝胶的电子传递速率比藻类水凝胶提高了约20%。我们还表明,活性水凝胶在不同环境条件下以及暴露于天然海水时都是稳定的。我们的研究为限制微藻在生物技术应用中进行空间高效培养的问题提供了一种潜在的受生物启发的解决方案。