Schlögel Guido, Lück Rüdiger, Kittler Stefan, Spadiut Oliver, Kopp Julian, Zanghellini Jürgen, Gotsmy Mathias
Department of Analytical Chemistry, University Vienna, Währinger Straße, 1090 Vienna, Austria.
Doctorate School of Chemistry, University of Vienna, Währinger Straße, 1090 Vienna, Austria.
Comput Struct Biotechnol J. 2024 Oct 11;23:3651-3661. doi: 10.1016/j.csbj.2024.09.024. eCollection 2024 Dec.
Biotechnological production of recombinant molecules relies heavily on fed-batch processes. However, as the cells' growth, substrate uptake, and production kinetics are often unclear, the fed-batches are frequently operated under sub-optimal conditions. Process design is based on simple feed profiles (e.g., constant or exponential), operator experience, and basic statistical tools (e.g., response surface methodology), which are unable to harvest the full potential of production. To address this challenge, we propose a general modeling framework, OptFed, which utilizes experimental data from non-optimal fed-batch processes to predict an optimal one. In detail, we assume that cell-specific rates depend on several state variables and their derivatives. Using measurements of bioreactor volume, biomass, and product, we fit the kinetic constants of ordinary differential equations. A regression model avoids overfitting by reducing the number of parameters. Thereafter, OptFed predicts optimal process conditions by solving an optimal control problem using orthogonal collocation and nonlinear programming. In a case study, we apply OptFed to a recombinant protein L fed-batch production process. We determine optimal controls for feed rate and reactor temperature to maximize the product-to-biomass yield and successfully validate our predictions experimentally. Notably, our framework outperforms RSM in both simulation and experiments, capturing an optimum previously missed. We improve the experimental product-to-biomass ratio by 19% and showcase OptFed's potential for enhancing process optimization in biotechnology.
重组分子的生物技术生产严重依赖补料分批培养过程。然而,由于细胞生长、底物摄取和生产动力学通常不明确,补料分批培养常常在次优条件下进行。过程设计基于简单的进料曲线(如恒定或指数曲线)、操作人员经验和基本统计工具(如响应面法),这些方法无法充分发挥生产潜力。为应对这一挑战,我们提出了一个通用的建模框架OptFed,它利用非最优补料分批培养过程的实验数据来预测最优过程。具体而言,我们假设细胞比速率取决于几个状态变量及其导数。利用生物反应器体积、生物量和产物的测量值,我们拟合常微分方程的动力学常数。回归模型通过减少参数数量避免过拟合。此后,OptFed通过使用正交配置和非线性规划解决最优控制问题来预测最优过程条件。在一个案例研究中,我们将OptFed应用于重组蛋白L的补料分批生产过程。我们确定进料速率和反应器温度的最优控制,以最大化产物与生物量的产率,并通过实验成功验证了我们的预测。值得注意的是,我们的框架在模拟和实验中均优于响应面法,捕捉到了之前错过的最优值。我们将实验产物与生物量的比率提高了19%,并展示了OptFed在增强生物技术过程优化方面的潜力。