Velázquez Elena, de Lorenzo Víctor
Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
ACS Synth Biol. 2024 Dec 20;13(12):4191-4201. doi: 10.1021/acssynbio.4c00640. Epub 2024 Dec 11.
Base editors, e.g., cytosine deaminases, are powerful tools for precise DNA editing , enabling both targeted nucleotide conversions and segment-specific diversification of bacterial genomes. Yet, regulation of their spatiotemporal activity is crucial to avoid off-target effects and enabling controlled evolution of specific genes and pathways. This work reports a strategy for tight control of base-editing devices through subjecting their expression to a genetic AND logic gate in which two chemical inducer inputs are strictly required for cognate activity. The case study involves an archetypal genetic device consisting of a cytosine deaminase (pmCDA1) fused to a T7 RNA polymerase (RNAP), which cause intensive diversification of DNA portions bordered by a T7 promoter and a T7 terminator─but whose activity has been shown unattainable to govern with standard conditional expression systems. By encoding up to three UAG stop codons into the DNA sequence of the pmCDA1-RNAP fusion, which is transcribed by the 3-methylbenzoate inducible promoter , we first broke the structure of the hybrid protein. Then, to overcome the interruptions caused by UAG codons, we placed transcription of a tRNA under the control of a cyclohexanone-dependent system. When tested in the soil bacterium and metabolic engineering chassis KT2440, these modifications changed the performance of the sliding base editor from a flawed YES logic to a precise AND logic. We also showed that such a 2-layer control brings about a minimal background activity as compared to a single-input digitalizer circuit. These results show the ability of suppressor tRNA-based logic gates for achieving stringent expression of otherwise difficult to control devices.
碱基编辑器,例如胞嘧啶脱氨酶,是精确DNA编辑的强大工具,能够实现靶向核苷酸转换和细菌基因组的片段特异性多样化。然而,对其时空活性进行调控对于避免脱靶效应以及实现特定基因和途径的可控进化至关重要。这项工作报告了一种通过使碱基编辑装置的表达受遗传与逻辑门控制来严格控制其活性的策略,在该逻辑门中,同源活性严格需要两个化学诱导物输入。案例研究涉及一个典型的遗传装置,该装置由与T7 RNA聚合酶(RNAP)融合的胞嘧啶脱氨酶(pmCDA1)组成,它会导致由T7启动子和T7终止子界定的DNA部分发生强烈多样化——但其活性已表明无法用标准的条件表达系统来调控。通过在由3 - 甲基苯甲酸诱导型启动子转录的pmCDA1 - RNAP融合蛋白的DNA序列中编码多达三个UAG终止密码子,我们首先破坏了杂合蛋白的结构。然后,为了克服由UAG密码子引起的中断,我们将一个tRNA的转录置于环己酮依赖系统的控制之下。当在土壤细菌和代谢工程底盘菌株KT2440中进行测试时,这些修饰将滑动碱基编辑器的性能从有缺陷的“或”逻辑转变为精确的“与”逻辑。我们还表明,与单输入数字化电路相比,这种两层控制带来的背景活性最小。这些结果表明了基于抑制性tRNA的逻辑门实现对原本难以控制的装置进行严格表达控制的能力。