Zhao Chen, Li Haitao, Yin Yanfeng, Tian Wenming, Yan Xiaodan, He Jinlu, Chen Zhian, Ye Sheng, Liu Jian
Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China.
College of Science & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202420895. doi: 10.1002/anie.202420895. Epub 2024 Dec 23.
It is essential for the development of highly efficient polymeric photocatalysts for hydrogen peroxide (HO) production. Nevertheless, the non-uniform molecular structures and sluggish reaction pathway of polymeric photocatalysts lead to low conversion efficiency. In this work, we report sulfur-contained phenolic resins with regulated conjugation for photocatalytic HO production. Due to the substitution of sulfur for methylene in the phenolic resin structure, the conjugation degree of the material is adjusted, resulting in the formation of a built-in electric field. This effectively enhances the charge separation capability, enabling charge carriers to react faster with substrates. Through in situ characterization and theoretical calculations, we have unveiled that the introduction of sulfur can modulate the reaction pathway of phenolic resin materials, enabling a dual-pathway photocatalytic HO production mediated by non-radical species. Impressively, the sulfur-contained resin photocatalyst showcases exceptional HO production activity with a solar-to-chemical conversion efficiency of 1.4 % exceeding most reported systems, and generates 25 mmol m of HO under natural sunlight through large-scale equipment. This work provides a facile strategy to separate the photogenerated electron-hole pairs of polymer photocatalysts to achieve efficient artificial photosynthesis.
开发用于生产过氧化氢(H₂O₂)的高效聚合物光催化剂至关重要。然而,聚合物光催化剂的分子结构不均匀以及反应路径缓慢导致转化效率低下。在这项工作中,我们报道了具有调控共轭结构的含硫酚醛树脂用于光催化H₂O₂生产。由于在酚醛树脂结构中硫取代了亚甲基,材料的共轭程度得到调节,从而形成了内建电场。这有效地增强了电荷分离能力,使电荷载流子能够更快地与底物反应。通过原位表征和理论计算,我们揭示了硫的引入可以调节酚醛树脂材料的反应路径,实现由非自由基物种介导的双路径光催化H₂O₂生产。令人印象深刻的是,含硫树脂光催化剂展现出卓越的H₂O₂生产活性,太阳能到化学能的转化效率为1.4%,超过了大多数已报道的体系,并且通过大规模设备在自然阳光下可产生25 mmol m⁻²的H₂O₂。这项工作提供了一种简便的策略来分离聚合物光催化剂的光生电子 - 空穴对,以实现高效的人工光合作用。