Suppr超能文献

组装和改造生物组件以开发高效的NADH再生系统。

Assembly and engineering of BioBricks to develop an efficient NADH regeneration system.

作者信息

Cheng Feng, Wang Cheng-Jiao, Gong Xiao-Xiao, Sun Ke-Xiang, Liang Xi-Hang, Xue Ya-Ping, Zheng Yu-Guo

机构信息

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.

The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.

出版信息

Appl Environ Microbiol. 2025 Jan 31;91(1):e0104124. doi: 10.1128/aem.01041-24. Epub 2024 Dec 11.

Abstract

UNLABELLED

The cofactor regeneration system plays a crucial role in redox biocatalysis for organic synthesis and the pharmaceutical industry. The alcohol dehydrogenase (ADH)-based regeneration system offers a promising solution for the regeneration of NAD(P)H. However, its widespread use is hindered by low activity and poor expression of ADH in . Herein, the BioBricks (promoter, ribosome binding site [RBS], functional gene, and terminator) were assembled and engineered to constitute an efficient NADH regeneration system. The semi-rational design was employed to enhance the catalytic efficiency of ADH (an ADH from ), resulting in a beneficial ADH variant with a 2.1-fold increase in catalytic efficiency. Furthermore, the RBS optimization was used to increase the expression of ADH genes, leading to the identification of an RBS with a 3.2-fold increased translation rate. Using this developed system, the NADH generating velocity reached more than 2 s even toward 0.1 mM NAD, indicating that it is the most promising NADH regeneration so far. Finally, the engineered system was utilized for the asymmetric biosynthesis of l-phosphinothricin (a chiral herbicide), with a high yield (>95%).

IMPORTANCE

The alcohol dehydrogenase (ADH)-based coenzyme regeneration system serves as a useful tool in redox biocatalysis. This system effectively replenishes NAD(P)H by utilizing isopropanol as a substrate, with the added advantage of easily separable acetone as a by-product. Previous studies focused on discovering new genes and engineering the ADH protein for higher catalytic efficiency, neglecting the optimization of other gene components. In this study, a remarkably efficient NADH regeneration system was developed using BioBricks assembly for system initialization. The ADH engineering was used to enhance catalytic efficiency, and RBS optimization for elevated ADH expression, which resulted in not only a 2.1-fold increase in catalytic efficiency but also a 3.2-fold increase in translation rate. Together, these improvements resulted in an overall 6.7-fold enhancement in performance. This system finds application in a wide range of NADH-dependent biocatalysis processes and is particularly advantageous for the biosynthesis of fine chemicals.

摘要

未标记

辅因子再生系统在用于有机合成和制药行业的氧化还原生物催化中起着至关重要的作用。基于醇脱氢酶(ADH)的再生系统为NAD(P)H的再生提供了一个有前景的解决方案。然而,其广泛应用受到ADH在[具体宿主]中活性低和表达差的阻碍。在此,组装并改造了生物砖(启动子、核糖体结合位点[RBS]、功能基因和终止子)以构成一个高效的NADH再生系统。采用半理性设计提高ADH(来自[具体来源]的一种ADH)的催化效率,得到一种催化效率提高2.1倍的有益ADH变体。此外,利用RBS优化提高ADH基因的表达,从而鉴定出一种翻译速率提高3.2倍的RBS。使用这个开发的系统,即使对于0.1 mM NAD,NADH生成速度也达到了超过2 s,表明它是迄今为止最有前景的NADH再生系统。最后,该工程系统被用于手性除草剂L-草铵膦的不对称生物合成,产率很高(>95%)。

重要性

基于醇脱氢酶(ADH)的辅酶再生系统是氧化还原生物催化中的一种有用工具。该系统通过利用异丙醇作为底物有效地补充NAD(P)H,还有易于分离的副产物丙酮这一额外优势。以前的研究集中于发现新的[具体来源]基因和改造ADH蛋白以提高催化效率,而忽略了其他基因组件的优化。在本研究中,使用生物砖组装进行系统初始化开发了一个非常高效的NADH再生系统。通过ADH工程提高催化效率,通过RBS优化提高ADH表达,这不仅使催化效率提高了2.1倍,还使翻译速率提高了3.2倍。这些改进共同使性能整体提高了6.7倍。该系统可应用于广泛的依赖NADH的生物催化过程,尤其有利于精细化学品的生物合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b44/11784351/8225e7b1f6dc/aem.01041-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验