Suppr超能文献

一项系统综述,以评估当前海草和红树林生态系统中地表水和沉积物微塑料的采样方法。

A systematic review to assess current surface water and sediment microplastic sampling practices in seagrass and mangrove ecosystems.

作者信息

Greenshields Jack, Anastasi Amie, Irving Andrew D, Capper Angela

机构信息

Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia.

Central Queensland Innovation and Research Precinct, Central Queensland University, Rockhampton, 4701, Australia.

出版信息

Environ Sci Pollut Res Int. 2024 Dec;31(59):66615-66629. doi: 10.1007/s11356-024-35690-9. Epub 2024 Dec 11.

Abstract

Global plastic production is estimated to be 400 million tonnes per annum, with ~ 5.25 trillion fragments floating in our oceans. Microplastics (< 5 mm) have the potential to disproportionately accumulate and become trapped in mangroves and seagrass meadows, creating plastic 'sinks'. This is concerning as these ecosystems are of great ecological and economic importance, with microplastics causing harm to inhabiting flora and fauna. However, accurately measuring microplastic abundance, comparing findings, and determining potential impacts are difficult due to a lack of standardised sampling protocols. Therefore, a systematic literature review was completed to review currently adopted microplastic sampling methods in surface water and sediment in seagrass and mangrove ecosystems. These were compared with recommendations from existing governmental and institutional groups as a first step to standardising methods for future sampling procedures in seagrasses and mangroves.

摘要

全球塑料产量估计为每年4亿吨,约有5.25万亿个塑料碎片漂浮在海洋中。微塑料(<5毫米)有可能过度积累并被困在红树林和海草草甸中,形成塑料“汇”。这令人担忧,因为这些生态系统具有重大的生态和经济意义,微塑料会对栖息其中的动植物造成伤害。然而,由于缺乏标准化的采样方案,准确测量微塑料丰度、比较研究结果以及确定潜在影响都很困难。因此,我们完成了一项系统的文献综述,以回顾目前在海草和红树林生态系统的地表水和沉积物中采用的微塑料采样方法。将这些方法与现有政府和机构团体的建议进行比较,作为实现海草和红树林未来采样程序方法标准化的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8630/11666669/afe3ad9d7f09/11356_2024_35690_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验