Baroni Laís, Scoralick Lucas, Reis Augusto, Belloze Kele, Pedroso Marcel, Alves Ronaldo, Boccolini Cristiano, Boccolini Patricia, Ogasawara Eduardo
Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ), Rio de Janeiro, RJ, Brazil.
Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
PLoS One. 2024 Dec 11;19(12):e0310413. doi: 10.1371/journal.pone.0310413. eCollection 2024.
Epidemiology is considered both a field of research and a methodological approach within the broader health sciences. It aims to understand health-related events' causes and effects and provide the evidence necessary to prevent disease and implement effective control and prevention strategies. One of the main focuses of epidemiology is identifying the determinant factors in the health situation of populations since health-related anomalies are not randomly distributed among people. This understanding brings up the necessity of considering each place's particularities and observing the regularity of diseases in a population context.
We present the Contextual-Compositional Approach (CCA) for the discovery of associations between Health Indicators (HI) and Health Determinants (HD) for neonatal mortality rate monitoring in situations of anomalies. CCA uses time series concepts, anomaly detection, and data distribution between classes for studying HD under expected conditions and comparing them to the anomaly conditions indicated by the anomaly detection in the HI. CCA is evaluated using a neonatal mortality database in health facilities in Rio de Janeiro, Brazil.
The results show that CCA can reveal essential associations between the health condition and the population's social, economic, and cultural characteristics on different scales.
CCA stands out because it is easy to apply and understand, requiring little computational resources and parameters.
流行病学在更广泛的健康科学领域中既被视为一个研究领域,也是一种方法论。它旨在了解与健康相关事件的因果关系,并提供预防疾病和实施有效控制与预防策略所需的证据。流行病学的主要重点之一是确定人群健康状况中的决定因素,因为与健康相关的异常情况并非在人群中随机分布。这种认识凸显了考虑每个地方的特殊性并在人群背景下观察疾病规律的必要性。
我们提出了情境 - 成分法(CCA),用于在异常情况下监测新生儿死亡率时发现健康指标(HI)与健康决定因素(HD)之间的关联。CCA使用时间序列概念、异常检测以及类间数据分布来研究预期条件下的HD,并将其与HI中异常检测所指示的异常条件进行比较。使用巴西里约热内卢医疗机构的新生儿死亡率数据库对CCA进行评估。
结果表明,CCA能够揭示不同尺度上健康状况与人群社会、经济和文化特征之间的重要关联。
CCA脱颖而出,因为它易于应用和理解,所需的计算资源和参数很少。