Song Run-Wei, Jiang Tian-Ci, Zhang Xue-Yang, Shen Cheng-Long, Lou Qing, Shan Chong-Xin
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China.
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Adv Sci (Weinh). 2025 Feb;12(5):e2411898. doi: 10.1002/advs.202411898. Epub 2024 Dec 11.
In classical photodynamic therapy, tumor cells are killed by the cytotoxic species via type-I/II photochemical reactions, seriously limited by the external photoexcitation and hypoxia. Herein, the electron transfer mechanism between fluorophores and peroxalate-HO reaction is investigated and the singlet/triplet electron exchange is utilized to achieve long-persistent chemiluminescence imaging and synergistic type-I/II/III photodynamic therapy. As a proof-of-concept, the photosensitizers of carbon nanodots (CDs)-loaded chlorin e6 (CDs-Ce6) are designed and integrated with the peroxalate molecules, and the as-prepare polymer carbon nanodots (p-CDs) exhibit novel tumor microenvironment (TME)-responsive long-persistent near-infrared CL and photochemical reactions, evoking the in vivo imaging and synergistic dynamic therapy in tumor tissue. Mechanistically, the excess reactive oxygen species in TME can trigger the chemically initiated singlet/triplet electron exchange between the hydrophobic CDs-Ce6 and peroxalate-derived 1,2-dioxetanes and thus the excess excited singlet/triplet electron of the CDs-Ce6 can ensure the long-persistent near-infrared CL, type I/II photochemical production of hydroxyl radicals, superoxide radical and singlet oxygen, and type III photochemical damage of maladjusted biomacromolecules, enabling the long-persistent near-infrared biological imaging and enhanced cancer therapy. These results shed a new sight into the energy transfer mechanism in chemiluminescence and pave a new sight into the architecture of multifunctional theragnostic nanoplatforms.
在经典光动力疗法中,肿瘤细胞通过I/II型光化学反应被细胞毒性物质杀死,但受到外部光激发和缺氧的严重限制。在此,研究了荧光团与过氧草酸 - HO反应之间的电子转移机制,并利用单线态/三线态电子交换实现长持续时间的化学发光成像和协同I/II/III型光动力疗法。作为概念验证,设计了负载碳纳米点(CDs)的二氢卟吩e6(CDs-Ce6)光敏剂并将其与过氧草酸分子整合,所制备的聚合物碳纳米点(p-CDs)表现出新型肿瘤微环境(TME)响应的长持续时间近红外化学发光和光化学反应,引发肿瘤组织中的体内成像和协同动态治疗。从机制上讲,TME中过量的活性氧可以触发疏水性CDs-Ce6与过氧草酸衍生的1,2 - 二氧杂环丁烷之间的化学引发的单线态/三线态电子交换,因此CDs-Ce6过量的激发单线态/三线态电子可以确保长持续时间的近红外化学发光、I/II型光化学产生羟基自由基、超氧自由基和单线态氧,以及III型光化学对失调生物大分子的损伤,实现长持续时间的近红外生物成像和增强的癌症治疗。这些结果为化学发光中的能量转移机制提供了新的视角,并为多功能诊疗纳米平台的构建开辟了新的途径。