Suppr超能文献

P值已死?骨科医生的贝叶斯统计学

Death of the P Value? Bayesian Statistics for Orthopaedic Surgeons.

作者信息

Polmear Michael, Vasilopoulos Terrie, O'Hara Nathan, Krupko Thomas

机构信息

From the Department of Surgery, Uniformed Services University, Bethesda, MD (Polmear), the Department of Orthopaedic Surgery (Polmear), the Department of Anesthesiology and Orthopaedic Surgery, University of Florida, Gainesville, FL (Vasilopoulos), the Department of Orthopaedic Surgery, University of Maryland, College Park, MD (O'Hara), and the Department of Orthopaedic Surgery, University of Florida, Gainesville, FL (Krupko).

出版信息

J Am Acad Orthop Surg. 2025 Mar 15;33(6):285-300. doi: 10.5435/JAAOS-D-24-00813. Epub 2024 Dec 10.

Abstract

Statistical interpretation is foundational to evidence-based medicine. Frequentist ( P value testing) and Bayesian statistics are two major approaches for hypothesis testing. Studies analyzed with Bayesian methods are increasingly common with a 4-fold increase in the past 10 years. The Bayesian approach can align with clinical decision making by interpreting smaller differences that are not limited by P values and misleading claims of "trends toward significance." Both methods follow a workflow that includes sampling, hypothesis testing, interpretation, and iteration. Frequentist methodology is familiar and common. However, the limitations are the misunderstanding, misuse, and deceptively simple utility of interpreting dichotomous P values. Bayesian approaches are relatively less common and provide an alternative approach to trial design and data interpretation. Marginal differences elucidated by Bayesian methods may be perceived as less decisive than a P value that may reject a null hypothesis. The purposes of this review are to introduce Bayesian principles and Bayes theorem, define how pretest probability and known information may inform diagnostic testing using an example from prosthetic joint infection, contrast Bayesian and frequentist approaches using an example from the VANCO orthopaedic prospective trial, and describe the criteria for critically reviewing Bayesian studies.

摘要

统计解释是循证医学的基础。频率学派(P值检验)和贝叶斯统计是假设检验的两种主要方法。采用贝叶斯方法分析的研究越来越普遍,在过去10年中增加了4倍。贝叶斯方法可以通过解释不受P值限制的较小差异以及“显著性趋势”的误导性说法来与临床决策保持一致。两种方法都遵循一个包括抽样、假设检验、解释和迭代的工作流程。频率学派方法为人熟悉且常用。然而,其局限性在于对二分P值的误解、误用以及看似简单实则具有欺骗性的效用。贝叶斯方法相对不太常见,为试验设计和数据解释提供了另一种方法。贝叶斯方法所揭示的微小差异可能被认为不如可能拒绝原假设的P值那样具有决定性。本综述的目的是介绍贝叶斯原理和贝叶斯定理,通过一个人工关节感染的例子定义先验概率和已知信息如何为诊断测试提供信息,通过VANCO骨科前瞻性试验的例子对比贝叶斯方法和频率学派方法,并描述严格审查贝叶斯研究的标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验