Suppr超能文献

预测易损冠状动脉:一种放射组学与生物力学相结合的方法。

Predicting vulnerable coronary arteries: A combined radiomics-biomechanics approach.

作者信息

Corti Anna, Stefanati Marco, Leccardi Matteo, De Filippo Ovidio, Depaoli Alessandro, Cerveri Pietro, Migliavacca Francesco, Corino Valentina D A, Rodriguez Matas José F, Mainardi Luca, Dubini Gabriele

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.

出版信息

Comput Methods Programs Biomed. 2025 Mar;260:108552. doi: 10.1016/j.cmpb.2024.108552. Epub 2024 Dec 4.

Abstract

BACKGROUND AND OBJECTIVE

Nowadays, vulnerable coronary plaque detection from coronary computed tomography angiography (CCTA) is suboptimal, although being crucial for preventing major adverse cardiac events. Moreover, despite the suggestion of various vulnerability biomarkers, encompassing image and biomechanical factors, accurate patient stratification remains elusive, and a comprehensive approach integrating multiple markers is lacking. To this aim, this study introduces an innovative approach for assessing vulnerable coronary arteries and patients by integrating radiomics and biomechanical markers through machine learning methods.

METHODS

The study included 40 patients (7 high-risk and 33 low-risk) who underwent both CCTA and coronary optical coherence tomography (OCT). The dataset comprised 49 arteries (with 167 plaques), 7 of which (with 28 plaques) identified as vulnerable by OCT. Following image preprocessing and segmentation, CCTA-based radiomic features were extracted and a finite element analysis was performed to compute the biomechanical features. A novel machine learning pipeline was implemented to stratify coronary arteries and patients. For each stratification task, three independent predictive models were developed: a radiomic, a biomechanical and a combined radiomic-biomechanical model. Both k-nearest neighbors (KNN) and decision tree (DT) classifiers were considered.

RESULTS

The best radiomic model (KNN) detected all 7 vulnerable arteries and patients and was associated with a balanced accuracy of 0.86 (sensitivity=1, specificity=0.71) for the artery model and of 0.83 (sensitivity=1, specificity=0.67) for the patient model. The best biomechanical model (DT) detected 6 over 7 vulnerable arteries and patients and remarkably increased the specificity, resulting in a balanced accuracy of 0.89 (sensitivity=0.86, specificity=0.93) for the artery model and of 0.88 (sensitivity=0.86, specificity=0.91) for the patient model. Notably, the combined approach optimized the performance, with an increase in the balance accuracy up to 0.94 for the artery model and up to 0.92 for the patient model, being associated with sensitivity=1 and high specificity (0.88 and 0.85 for artery and patient models, respectively).

CONCLUSION

This investigation highlights the promise of radio-mechanical coronary artery phenotyping for patient stratification. If confirmed from larger studies, our approach enables a more personalized management of the disease, with the early identification of high-risk individuals and the reduction of unnecessary interventions for low-risk individuals.

摘要

背景与目的

如今,尽管冠状动脉计算机断层扫描血管造影(CCTA)对检测易损冠状动脉斑块至关重要,但目前其检测效果仍不尽人意。此外,尽管有多种易损性生物标志物的相关建议,包括图像和生物力学因素,但准确的患者分层仍然难以实现,且缺乏整合多种标志物的综合方法。为此,本研究引入了一种创新方法,通过机器学习方法整合放射组学和生物力学标志物,以评估易损冠状动脉和患者。

方法

该研究纳入了40例患者(7例高危患者和33例低危患者),这些患者均接受了CCTA和冠状动脉光学相干断层扫描(OCT)检查。数据集包含49条动脉(共167个斑块),其中7条动脉(28个斑块)经OCT鉴定为易损斑块。在进行图像预处理和分割后,提取基于CCTA的放射组学特征,并进行有限元分析以计算生物力学特征。实施了一种新颖的机器学习流程来对冠状动脉和患者进行分层。对于每个分层任务,开发了三个独立的预测模型:放射组学模型、生物力学模型和放射组学-生物力学联合模型。同时考虑了k近邻(KNN)和决策树(DT)分类器。

结果

最佳放射组学模型(KNN)检测出了所有7条易损动脉和患者,动脉模型的平衡准确率为0.86(敏感性=1,特异性=0.71),患者模型的平衡准确率为0.83(敏感性=1,特异性=0.67)。最佳生物力学模型(DT)检测出了7条易损动脉和患者中的6条,并显著提高了特异性,动脉模型的平衡准确率为0.89(敏感性=0.86,特异性=0.93),患者模型的平衡准确率为0.88(敏感性=0.86,特异性=0.91)。值得注意的是,联合方法优化了性能,动脉模型的平衡准确率提高到了0.94,患者模型的平衡准确率提高到了0.92,敏感性均为1且特异性较高(动脉模型和患者模型分别为0.88和0.85)。

结论

本研究突出了放射-机械冠状动脉表型分析在患者分层方面的前景。如果能在更大规模的研究中得到证实,我们的方法将能够实现更个性化的疾病管理,早期识别高危个体,并减少对低危个体的不必要干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验