Chen Fuzhen, Xu Jian, Tang Ligen, Yu Qun, Gu Jianwei
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, PR China.
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
Sci Total Environ. 2025 Jan 1;958:177897. doi: 10.1016/j.scitotenv.2024.177897. Epub 2024 Dec 10.
CO saline aquifer storage represents a promising strategy for mitigating the environmental impact of greenhouse gas emissions. However, the long-term effects of CO dissolved in formation water on rock minerals remain insufficiently understood. This study utilizes cast thin section analysis, scanning electron microscopy, and energy dispersive spectrometry techniques to perform a comprehensive microscopic investigation on this issue. Experimental results from sandstone core samples drilled from the Ordos pilot field reveal that feldspar minerals predominantly undergo geochemical dissolution, while quartz and clay minerals primarily exhibit physical alterations. Feldspar minerals, including albite, potassium feldspar, and anorthite, exhibit significant geochemical dissolution, characterized by cleavage plane dissolution, swelling, selective dissolution, and in-situ accumulation of dissolution products. This process leads to the formation of secondary minerals such as quartz, kaolinite, and illite, along with various microscopic structures like vugs, pits, and filamentous remnants. Alterations in quartz include the formation of stress-induced microfractures, the attachment of mineral clasts, the precipitation of geochemical reaction products, and pore blockage. In clay minerals, the formation, closure, interconnection, and reconfiguration of microfractures are evident characteristics, particularly at the nanoscale. The products of CO-HO-rock interactions typically comprise a complex mixture of physical and chemical products, marked by intricate elemental compositions and diverse structural forms, including blocky, granular, powdery, filamentous, and floc-like structures. This work reveals the distinctive chemical dissolution mechanisms of sandstone with complex mineral compositions, clarifies the CO-induced physical alteration behavior of multiple minerals and identifies the multi-scale migration mechanisms of products generated by CO-HO-rock interactions. Moreover, these interactions have a dual impact: they enhance the porosity and permeability, while also potentially compromising the structural integrity of the rock and formation. This research provides a foundation for assessing the impact of CO storage on fluid flow and evaluating environmental safety concerns, such as CO leakage and geological subsidence.
二氧化碳盐水层封存是减轻温室气体排放对环境影响的一种很有前景的策略。然而,溶解在地层水中的二氧化碳对岩石矿物的长期影响仍未得到充分了解。本研究利用铸体薄片分析、扫描电子显微镜和能谱技术对这一问题进行全面的微观研究。从鄂尔多斯试验区钻取的砂岩岩心样品的实验结果表明,长石矿物主要发生地球化学溶解,而石英和粘土矿物主要表现为物理变化。包括钠长石、钾长石和钙长石在内的长石矿物表现出显著的地球化学溶解,其特征为解理面溶解、膨胀、选择性溶解以及溶解产物的原位堆积。这一过程导致了石英、高岭石和伊利石等次生矿物的形成,以及诸如孔洞、坑洼和丝状残余物等各种微观结构。石英的变化包括应力诱导微裂缝的形成、矿物碎屑的附着、地球化学反应产物的沉淀以及孔隙堵塞。在粘土矿物中,微裂缝的形成、闭合、相互连接和重新配置是明显的特征,特别是在纳米尺度上。二氧化碳-水-岩石相互作用的产物通常包括物理和化学产物的复杂混合物,其特点是元素组成复杂,结构形式多样,包括块状、粒状、粉末状、丝状和絮状结构。这项工作揭示了具有复杂矿物成分的砂岩独特的化学溶解机制,阐明了二氧化碳诱导的多种矿物的物理变化行为,并确定了二氧化碳-水-岩石相互作用产生的产物的多尺度迁移机制。此外,这些相互作用具有双重影响:它们增加了孔隙度和渗透率,同时也可能损害岩石和地层的结构完整性。本研究为评估二氧化碳封存对流体流动的影响以及评估诸如二氧化碳泄漏和地质沉降等环境安全问题提供了基础。