Suppr超能文献

使用人工智能高光谱显微镜检测低水平抗菌剂诱导的活的但不可培养的大肠杆菌

Detection of Viable but Nonculturable E. coli Induced by Low-Level Antimicrobials Using AI-Enabled Hyperspectral Microscopy.

作者信息

Papa MeiLi, Wasit Aarham, Pecora Justin, Bergholz Teresa M, Yi Jiyoon

机构信息

Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.

Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.

出版信息

J Food Prot. 2025 Jan 2;88(1):100430. doi: 10.1016/j.jfp.2024.100430. Epub 2024 Dec 9.

Abstract

Rapid detection of bacterial pathogens is essential for food safety and public health, yet bacteria can evade detection by entering a viable but nonculturable (VBNC) state under sublethal stress, such as antimicrobial residues. These bacteria remain active but undetectable by standard culture-based methods without extensive enrichment, necessitating advanced detection methods. This study developed an AI-enabled hyperspectral microscope imaging (HMI) framework for rapid VBNC detection under low-level antimicrobials. The objectives were to (i) induce the VBNC state in Escherichia coli K-12 by exposure to selected antimicrobial stressors, (ii) obtain HMI data capturing physiological changes in VBNC cells, and (iii) automate the classification of normal and VBNC cells using deep learning image classification. The VBNC state was induced by low-level oxidative (0.01% hydrogen peroxide) and acidic (0.001% peracetic acid) stressors for 3 days, confirmed by live-dead staining and plate counting. HMI provided spatial and spectral data, extracted into pseudo-RGB images using three characteristic spectral wavelengths. An EfficientNetV2-based convolutional neural network architecture was trained on these pseudo-RGB images, achieving 97.1% accuracy of VBNC classification (n = 200), outperforming the model trained on RGB images at 83.3%. The results highlight the potential for rapid, automated VBNC detection using AI-enabled hyperspectral microscopy, contributing to timely intervention to prevent foodborne illnesses and outbreaks.

摘要

快速检测细菌病原体对食品安全和公共卫生至关重要,然而,细菌在亚致死应激(如抗菌残留)下可进入活的但不可培养(VBNC)状态,从而逃避检测。这些细菌仍具有活性,但在没有大量富集的情况下,通过基于标准培养的方法无法检测到,因此需要先进的检测方法。本研究开发了一种基于人工智能的高光谱显微镜成像(HMI)框架,用于在低水平抗菌剂存在下快速检测VBNC状态。目标是:(i)通过暴露于选定的抗菌应激源诱导大肠杆菌K-12进入VBNC状态;(ii)获取捕获VBNC细胞生理变化的HMI数据;(iii)使用深度学习图像分类自动对正常细胞和VBNC细胞进行分类。通过低水平氧化应激(0.01%过氧化氢)和酸性应激(0.001%过氧乙酸)诱导VBNC状态3天,通过死活染色和平板计数进行确认。HMI提供空间和光谱数据,利用三个特征光谱波长提取为伪RGB图像。基于EfficientNetV2的卷积神经网络架构在这些伪RGB图像上进行训练,VBNC分类准确率达到97.1%(n = 200),优于在RGB图像上训练的模型,其准确率为83.3%。结果突出了使用基于人工智能的高光谱显微镜进行快速、自动VBNC检测的潜力,有助于及时干预以预防食源性疾病和疫情爆发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验