Li Zhaojun, Nameirakpam Henry, Berggren Elin, Noumbe Ulrich, Kimura Takashi, Asakura Eito, Gray Victor, Thakur Deepa, Edvinsson Tomas, Lindblad Andreas, Kohda Makoto, Araujo Rafael B, Rao Akshay, Kamalakar M Venkata
Solid State Physics, Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden.
X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden.
J Am Chem Soc. 2024 Dec 25;146(51):35146-35154. doi: 10.1021/jacs.4c11052. Epub 2024 Dec 11.
Two-dimensional (2D) semiconducting dichalcogenides hold exceptional promise for next-generation electronic and photonic devices. Despite this potential, the pervasive presence of defects in 2D dichalcogenides results in carrier mobility and photoluminescence (PL) that fall significantly short of theoretical predictions. Although defect passivation offers a potential solution, its effects have been inconsistent. This arises from the lack of chemical understanding of the surface chemistry of the 2D material. In this work, we uncover new binding chemistry using a sequence-specific chemical passivation (SSCP) protocol based on 2-furanmethanothiol (FSH) and bis(trifluoromethane) sulfonimide lithium salt (Li-TFSI), which demonstrates a synchronized 100-fold enhancement in both carrier mobility and PL in WS monolayers. We propose an atomic-level synergistic defect passivation mechanism of both neutral and charged sulfur vacancies (SVs), supported by ultrafast transient absorption spectroscopy (TA), Hard X-ray photoelectron spectroscopy (HAXPES), and density functional theory (DFT) calculations. Our results establish a new semiconductor quality benchmark for 2D WS, paving the way for the development of sustainable 2D semiconductor technologies.
二维(2D)半导体二硫属化物在下一代电子和光子器件方面具有巨大潜力。尽管有这种潜力,但二维二硫属化物中普遍存在的缺陷导致载流子迁移率和光致发光(PL)远低于理论预测。虽然缺陷钝化提供了一种潜在的解决方案,但其效果并不一致。这是由于对二维材料表面化学缺乏化学理解所致。在这项工作中,我们使用基于2-呋喃甲硫醇(FSH)和双(三氟甲烷)磺酰亚胺锂盐(Li-TFSI)的序列特异性化学钝化(SSCP)协议发现了新的键合化学,该协议在WS单层中展示了载流子迁移率和PL同步提高100倍。我们提出了一种中性和带电硫空位(SVs)的原子级协同缺陷钝化机制,超快瞬态吸收光谱(TA)、硬X射线光电子能谱(HAXPES)和密度泛函理论(DFT)计算支持了这一机制。我们的结果为二维WS建立了新的半导体质量基准,为可持续二维半导体技术的发展铺平了道路。