Hadjaje Simon, Andrade-Silva Ignacio, Dalbe Marie-Julie, Clément Raphaël, Marthelot Joel
Aix-Marseille University, CNRS, IUSTI & Turing Centre for Living Systems (CENTURI), Marseille, France.
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Nat Commun. 2024 Dec 11;15(1):10577. doi: 10.1038/s41467-024-54527-0.
During their final transformation, insects emerge from the pupal case and deploy their wings within minutes. The wings deploy from a compact origami structure, to form a planar and rigid blade that allows the insect to fly. Deployment is powered by a rapid increase in internal pressure, and by the subsequent flow of hemolymph into the deployable wing structure. Using a combination of imaging techniques, we characterize the internal and external structure of the wing in Drosophila melanogaster, the unfolding kinematics at the organ scale, and the hemolymph flow during deployment. We find that, beyond the mere unfolding of the macroscopic folds, wing deployment also involves wing expansion, with the stretching of epithelial cells and the unwrinkling of the cuticle enveloping the wing. A quantitative computational model, incorporating mechanical measurements of the viscoelastic properties and microstructure of the wing, predicts the existence of an operating point for deployment and captures the dynamics of the process. This model shows that insects exploit material and geometric nonlinearities to achieve rapid and efficient reconfiguration of soft deployable structures.
在最终蜕变过程中,昆虫从蛹壳中羽化而出,并在数分钟内展开翅膀。翅膀从紧凑的折纸状结构展开,形成一个平面且坚硬的翼面,使昆虫能够飞行。翅膀展开由内部压力的快速增加以及随后血淋巴流入可展开的翅膀结构提供动力。我们结合多种成像技术,对黑腹果蝇翅膀的内部和外部结构、器官尺度上的展开运动学以及展开过程中的血淋巴流动进行了表征。我们发现,除了宏观褶皱的单纯展开,翅膀展开还涉及翅膀扩张,包括上皮细胞的拉伸以及包裹翅膀的表皮的展平。一个包含翅膀粘弹性特性和微观结构力学测量的定量计算模型,预测了展开的一个工作点,并捕捉到了该过程的动态变化。该模型表明,昆虫利用材料和几何非线性来实现软可展开结构的快速高效重构。