Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Nature. 2024 Apr;628(8009):795-803. doi: 10.1038/s41586-024-07293-4. Epub 2024 Apr 17.
Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.
昆虫构成了后生动物中物种最丰富的辐射,这种成功归因于主动飞行的进化。与翼龙、鸟类和蝙蝠不同,昆虫的翅膀不是由腿进化而来,而是附着在身体上的新颖结构,通过一个生物力学上复杂的铰链连接,将专门动力肌肉的微小、高频振动转化为翅膀的来回扫动。这个铰链由一系列微小、硬化的结构组成,称为小骨,通过灵活的关节相互连接,并由专门的控制肌肉的活动来调节。在这里,我们使用遗传编码的钙指示剂在果蝇中对这些肌肉的活动进行成像,同时使用高速摄像机跟踪翅膀的三维运动。我们使用机器学习创建了一个卷积神经网络,该网络可以根据转向肌肉的活动准确预测翅膀运动,以及一个编码器-解码器,可以预测小骨对翅膀运动的作用。通过在动态缩放的机器人蝇上回放翅膀运动的模式,我们量化了转向肌肉活动对空气动力的影响。一个包含我们铰链模型的基于物理的模拟生成了飞行动作,这些动作与自由飞行的苍蝇非常相似。这种综合的、多学科的方法揭示了昆虫翅膀铰链的机械控制逻辑,这可能是自然界中最复杂和最重要的进化骨骼结构之一。