Santos-Durán Gabriel N, Cooper Rory L, Jahanbakhsh Ebrahim, Timin Grigorii, Milinkovitch Michel C
Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
Nature. 2025 Jan;637(8045):375-383. doi: 10.1038/s41586-024-08268-1. Epub 2024 Dec 11.
Amniote integumentary appendages constitute a diverse group of micro-organs, including feathers, hair and scales. These structures typically develop as genetically controlled units, the spatial patterning of which emerges from a self-organized chemical Turing system with integrated mechanical feedback. The seemingly purely mechanical patterning of polygonal crocodile head scales provides an exception to this paradigm. However, the nature and origin of the mechanical stress field driving this patterning remain unclear. Here, using precise in ovo intravenous injections of epidermal growth factor protein, we generate Nile crocodile embryos with substantially convoluted head skin, as well as hatchlings with smaller polygonal head scales resembling those of caimans. We then use light-sheet fluorescence microscopy to quantify embryonic tissue-layer geometry, collagen architecture and the spatial distribution of proliferating cells. Using these data, we build a phenomenological three-dimensional mechanical growth model that recapitulates both normal and experimentally modified patterning of crocodile head scales. Our experiments and numerical simulations demonstrate that crocodile head scales self-organize through compressive folding, originating from near-homogeneous skin growth with differential stiffness of the dermis versus the epidermis. Our experiments and theoretical morphospace analyses indicate that variation in embryonic growth and material properties of skin layers provides a simple evolutionary mechanism that produces a diversity of head-scale patterns among crocodilian species.
羊膜动物的皮肤附属器构成了一组多样的微器官,包括羽毛、毛发和鳞片。这些结构通常作为基因控制的单元发育,其空间模式源自具有整合机械反馈的自组织化学图灵系统。多边形鳄鱼头部鳞片看似纯粹的机械模式形成是这一范例的一个例外。然而,驱动这种模式形成的机械应力场的性质和起源仍不清楚。在这里,我们通过在卵内精确静脉注射表皮生长因子蛋白,培育出头部皮肤大幅卷曲的尼罗鳄胚胎,以及头部鳞片较小且类似凯门鳄的多边形鳞片的幼鳄。然后,我们使用光片荧光显微镜来量化胚胎组织层几何结构、胶原蛋白结构以及增殖细胞的空间分布。利用这些数据,我们构建了一个现象学三维机械生长模型,该模型概括了鳄鱼头部鳞片的正常模式和实验性改变的模式。我们的实验和数值模拟表明,鳄鱼头部鳞片通过压缩折叠自组织形成,起源于真皮与表皮具有不同硬度的近乎均匀的皮肤生长。我们的实验和理论形态空间分析表明,胚胎生长和皮肤层材料特性的变化提供了一种简单的进化机制,产生了鳄目物种之间头部鳞片模式的多样性。