文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Research Trends of Artificial Intelligence in Lung Cancer: A Combined Approach of Analysis With Latent Dirichlet Allocation and HJ-Biplot Statistical Methods.

作者信息

De La Hoz-M Javier, Montes-Escobar Karime, Pérez-Ortiz Viorkis

机构信息

Faculty of Engineering, Universidad del Magdalena, Santa Marta, Colombia.

Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.

出版信息

Pulm Med. 2024 Dec 4;2024:5911646. doi: 10.1155/pm/5911646. eCollection 2024.


DOI:10.1155/pm/5911646
PMID:39664363
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11634404/
Abstract

Lung cancer (LC) remains one of the leading causes of cancer-related mortality worldwide. With recent technological advances, artificial intelligence (AI) has begun to play a crucial role in improving diagnostic and treatment methods. It is crucial to understand how AI has integrated into LC research and to identify the main areas of focus. The aim of the study was to provide an updated insight into the role of AI in LC research, analyzing evolving topics, geographical distribution, and contributions to journals. The study explores research trends in AI applied to LC through a novel approach combining latent Dirichlet allocation (LDA) topic modeling with the HJ-Biplot statistical technique. A growing interest in AI applications in LC oncology was observed, reflected in a significant increase in publications, especially after 2017, coinciding with the availability of computing resources. leads in publishing AI-related LC research, reflecting rigorous investigation in the field. Geographically, China and the United States lead in contributions, attributed to significant investment in R&D and corporate sector involvement. LDA analysis highlights key research areas such as pulmonary nodule detection, patient prognosis prediction, and clinical decision support systems, demonstrating the impact of AI in improving LC outcomes. DL and AI emerge as prominent trends, focusing on radiomics and feature selection, promising better decision-making in LC care. The increase in AI-driven research covers various topics, including data analysis methodologies, tumor characterization, and predictive methods, indicating a concerted effort to advance LC research. HJ-Biplot visualization reveals thematic clustering, illustrating temporal and geographical associations and highlighting the influence of high-impact journals and countries with advanced research capabilities. This multivariate approach offers insights into global collaboration dynamics and specialization, emphasizing the evolving role of AI in LC research and diagnosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/2e5d8059d7d1/PM2024-5911646.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/d9116d8b2f42/PM2024-5911646.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/b1382f5d6fa4/PM2024-5911646.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/46e109650de5/PM2024-5911646.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/cd764bd1b893/PM2024-5911646.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/2e5d8059d7d1/PM2024-5911646.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/d9116d8b2f42/PM2024-5911646.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/b1382f5d6fa4/PM2024-5911646.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/46e109650de5/PM2024-5911646.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/cd764bd1b893/PM2024-5911646.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/11634404/2e5d8059d7d1/PM2024-5911646.005.jpg

相似文献

[1]
Research Trends of Artificial Intelligence in Lung Cancer: A Combined Approach of Analysis With Latent Dirichlet Allocation and HJ-Biplot Statistical Methods.

Pulm Med. 2024-12-4

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Mapping the Bibliometrics Landscape of AI in Medicine: Methodological Study.

J Med Internet Res. 2023-12-8

[4]
Glioblastoma: a comprehensive approach combining bibliometric analysis, Latent Dirichlet Allocation, and HJ-Biplot : Glioblastoma insights and trends: a 49-year bibliometric analysis.

Neurosurg Rev. 2024-5-10

[5]
Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

Syst Rev. 2025-3-15

[6]
Depression and Anxiety in Patients with Psoriasis: A Comprehensive Analysis Combining Bibliometrics, Latent Dirichlet Allocation, and HJ-Biplot.

Healthcare (Basel). 2025-2-20

[7]
Research trends on AI in breast cancer diagnosis, and treatment over two decades.

Discov Oncol. 2024-12-18

[8]
Characterizing Artificial Intelligence Applications in Cancer Research: A Latent Dirichlet Allocation Analysis.

JMIR Med Inform. 2019-9-15

[9]
Navigating the AI frontiers in cardiovascular research: a bibliometric exploration and topic modeling.

Front Cardiovasc Med. 2024-1-3

[10]
Artificial intelligence (AI) in restorative dentistry: current trends and future prospects.

BMC Oral Health. 2025-4-18

本文引用的文献

[1]
Global research on keratomycosis: New insights from latent Dirichlet allocation and HJ-Biplot-driven knowledge mapping study.

Diagn Microbiol Infect Dis. 2024-9

[2]
The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis.

Front Oncol. 2024-2-2

[3]
Bibliometric analysis and research trends of artificial intelligence in lung cancer.

Heliyon. 2024-1-18

[4]
Utilisation of radiotherapy in lung cancer: A scoping narrative literature review with a focus on the introduction of evidence-based therapeutic approaches in Europe.

Clin Transl Radiat Oncol. 2023-12-18

[5]
Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes.

Cancers (Basel). 2023-10-31

[6]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[7]
Artificial Intelligence and Machine Learning in Cancer Research: A Systematic and Thematic Analysis of the Top 100 Cited Articles Indexed in Scopus Database.

Cancer Control. 2022

[8]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[9]
A narrative review of artificial intelligence-assisted histopathologic diagnosis and decision-making for non-small cell lung cancer: achievements and limitations.

J Thorac Dis. 2021-12

[10]
Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis.

Healthcare (Basel). 2021-12-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索