Suppr超能文献

人工智能和机器学习在癌症研究中的应用:Scopus 数据库中被引前 100 篇文章的系统和主题分析。

Artificial Intelligence and Machine Learning in Cancer Research: A Systematic and Thematic Analysis of the Top 100 Cited Articles Indexed in Scopus Database.

机构信息

Department of Software Engineering, School of Computer Science and Engineering, Southeast University, Nanjing, China.

Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China.

出版信息

Cancer Control. 2022 Jan-Dec;29:10732748221095946. doi: 10.1177/10732748221095946.

Abstract

INTRODUCTION

Cancer is a major public health problem and a global leading cause of death where the screening, diagnosis, prediction, survival estimation, and treatment of cancer and control measures are still a major challenge. The rise of Artificial Intelligence (AI) and Machine Learning (ML) techniques and their applications in various fields have brought immense value in providing insights into advancement in support of cancer control.

METHODS

A systematic and thematic analysis was performed on the Scopus database to identify the top 100 cited articles in cancer research. Data were analyzed using RStudio and VOSviewer.Var1.6.6.

RESULTS

The top 100 articles in AI and ML in cancer received a 33 920 citation score with a range of 108 to 5758 times. Doi Kunio from the USA was the most cited author with total number of citations (TNC = 663). Out of 43 contributed countries, 30% of the top 100 cited articles originated from the USA, and 10% originated from China. Among the 57 peer-reviewed journals, the "Expert Systems with Application" published 8% of the total articles. The results were presented in highlight technological advancement through AI and ML via the widespread use of Artificial Neural Network (ANNs), Deep Learning or machine learning techniques, Mammography-based Model, Convolutional Neural Networks (SC-CNN), and text mining techniques in the prediction, diagnosis, and prevention of various types of cancers towards cancer control.

CONCLUSIONS

This bibliometric study provides detailed overview of the most cited empirical evidence in AI and ML adoption in cancer research that could efficiently help in designing future research. The innovations guarantee greater speed by using AI and ML in the detection and control of cancer to improve patient experience.

摘要

简介

癌症是一个重大的公共卫生问题,也是全球主要死因之一,其筛查、诊断、预测、生存估计和治疗以及控制措施仍然是一个主要挑战。人工智能 (AI) 和机器学习 (ML) 技术的兴起及其在各个领域的应用在提供癌症控制支持方面的进步提供了巨大的价值。

方法

在 Scopus 数据库中进行了系统和主题分析,以确定癌症研究中引用最多的前 100 篇文章。使用 RStudio 和 VOSviewer.Var1.6.6 对数据进行分析。

结果

AI 和 ML 在癌症方面的前 100 篇文章获得了 33920 次引用评分,引用次数从 108 次到 5758 次不等。来自美国的 Doi Kunio 是被引用最多的作者,总引用次数 (TNC) 为 663 次。在 43 个贡献国家中,有 30%的前 100 篇文章来自美国,10%来自中国。在 57 种同行评议期刊中,《专家系统应用》发表了 8%的文章。结果通过广泛使用人工神经网络 (ANNs)、深度学习或机器学习技术、基于乳房 X 光照片的模型、卷积神经网络 (SC-CNN) 和文本挖掘技术,展示了人工智能和机器学习在各种类型癌症的预测、诊断和预防方面的技术进步,以实现癌症控制。

结论

本计量研究提供了对癌症研究中采用人工智能和机器学习的最具影响力的实证证据的详细概述,这可以有效地帮助设计未来的研究。通过在癌症的检测和控制中使用人工智能和机器学习,这些创新保证了更高的速度,从而改善患者体验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b1/9189515/e184759ba137/10.1177_10732748221095946-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验