Cucchi Eric W, Burzynski Joseph, Marshall Nicholas, Greenberg Bruce
University of Massachusetts Chan Medical School, Departments of Medicine, Worcester, MA 01655, United States.
UMass Memorial Health, UMass Memorial Medical Center, Worcester, MA 01655, United States.
JAMIA Open. 2024 Dec 11;7(4):ooae143. doi: 10.1093/jamiaopen/ooae143. eCollection 2024 Dec.
Many routine patient care items should be reviewed at least daily for intensive care unit (ICU) patients. These items are often incompletely performed, and dynamic clinical decision support tools (CDSTs) may improve attention to these daily items. We sought to evaluate the accuracy of institutionalized electronic health record (EHR) based custom dynamic CDST to support 22 ICU rounding quality metrics across 7 categories (hypoglycemia, venothromboembolism prophylaxis, stress ulcer prophylaxis, mechanical ventilation, sedation, nutrition, and catheter removal).
The dynamic CDST evaluates patient characteristics and patient orders, then identifies gaps between active interventions and conditions with recommendations of evidence based clinical practice guidelines across 22 areas of care for each patient. The results of the tool prompt clinicians to address any identified care gaps. We completed a confusion matrix to assess the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of the dynamic CDST and the individual metrics.
Tertiary academic medical center and community hospital ICUs.
Customized Clinical Decision Support Tool.
The metrics were evaluated 1421 times over 484 patients. The overall accuracy of the entire dynamic CDST is 0.979 with a sensitivity of 0.979, specificity of 0.978, PPV 0.969, and NPV 0.986.
A customized, EHR based dynamic CDST can be highly accurate. Integrating a comprehensive dynamic CDST into existing workflows could improve attention and actions related to routine ICU quality metrics.
对于重症监护病房(ICU)患者,许多日常患者护理项目应至少每天进行检查。这些项目的执行往往不完整,而动态临床决策支持工具(CDST)可能会提高对这些日常项目的关注度。我们试图评估基于机构电子健康记录(EHR)的定制动态CDST在支持7个类别(低血糖、静脉血栓栓塞预防、应激性溃疡预防、机械通气、镇静、营养和导管拔除)的22项ICU查房质量指标方面的准确性。
动态CDST评估患者特征和患者医嘱,然后识别积极干预措施与病情之间的差距,并针对每位患者在22个护理领域提供基于循证临床实践指南的建议。该工具的结果促使临床医生解决任何已识别的护理差距。我们完成了一个混淆矩阵,以评估动态CDST和各个指标的敏感性、特异性、准确性、阳性预测值(PPV)和阴性预测值(NPV)。
三级学术医疗中心和社区医院的ICU。
定制临床决策支持工具。
对484例患者的指标进行了1421次评估。整个动态CDST的总体准确性为0.979,敏感性为0.979,特异性为0.978,PPV为0.969,NPV为0.986。
基于EHR的定制动态CDST可以具有很高的准确性。将全面的动态CDST整合到现有工作流程中可以提高对ICU常规质量指标的关注度和相关行动。