Llorente-Saguer Isaac, Oxtoby Neil P
UCL Hawkes Institute and Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
UCL Hawkes Institute and Department of Computer Science, University College London, London WC1E 6BT, UK.
Brain Commun. 2024 Dec 9;6(6):fcae438. doi: 10.1093/braincomms/fcae438. eCollection 2024.
PET is used to measure tau protein accumulation in Alzheimer's disease. Multiple biomarkers have been proposed to track disease progression, most notably the standardized uptake value ratio of PET tracer uptake in a target region of interest relative to a reference region, but literature suggests these region choices are nontrivial. This study presents and evaluates a novel framework, BioDisCVR, designed to facilitate the discovery of useful biomarkers, demonstrated on [F]AV-1451 tau PET data in multiple cohorts. BioDisCVR enhances signal-to-noise by conducting a data-driven search through the space of possible combinations of regional tau PET signals into a ratio of two composite regions, driven by a user-defined fitness function. This study compares ratio-based biomarkers discovered by the framework with state-of-the-art standardized uptake value ratio biomarkers. Data used is tau PET regional measurements from 198 individuals from the Alzheimer's Disease Neuroimaging Initiative database, used for discovery, and 42 from the Mayo Clinic Alzheimer's Disease Research Center and Mayo Clinic Study of Aging (MCSA), used for external validation. Biomarkers are evaluated by calculating clinical trial sample size estimates for 80% power and 20% effect size. Secondary metrics are a measure of longitudinal consistency (standard deviation of linear mixed-effects model residuals), and separation between cognitive groups (-statistic of the change over time due to being cognitively impaired). When applied to preclinical (secondary prevention with CU individuals) and clinical (treatment aimed at cognitively impaired individuals) trials on Alzheimer's disease, our data-driven framework BioDisCVR discovered ratio-based tau PET biomarkers vastly superior to previous work, both reducing measurement error and sample size estimates for hypothetical clinical trials. Our analysis suggests remarkable potential for patient benefit (reduced exposure to health risks associated with experimental drugs) and substantial cost savings, through accelerated trials and reduced sample sizes. Our study supports the leveraging of data-driven methods like BioDisCVR for clinical benefit, with the potential to positively impact drug development in Alzheimer's disease and beyond.
正电子发射断层扫描(PET)用于测量阿尔茨海默病中tau蛋白的积聚情况。人们已经提出了多种生物标志物来追踪疾病进展,其中最显著的是PET示踪剂在目标感兴趣区域相对于参考区域的标准化摄取值比值,但文献表明这些区域的选择并非易事。本研究提出并评估了一个名为BioDisCVR的新框架,旨在促进有用生物标志物的发现,并在多个队列的[F]AV - 1451 tau PET数据上进行了验证。BioDisCVR通过在区域tau PET信号的可能组合空间中进行数据驱动搜索,将其转化为两个复合区域的比值,由用户定义的适应度函数驱动,从而增强了信噪比。本研究将该框架发现的基于比值的生物标志物与最先进的标准化摄取值比值生物标志物进行了比较。所使用的数据是来自阿尔茨海默病神经影像倡议数据库的198名个体的tau PET区域测量值,用于发现过程,以及来自梅奥诊所阿尔茨海默病研究中心和梅奥诊所衰老研究(MCSA)的42名个体的数据,用于外部验证。通过计算80%检验效能和20%效应量的临床试验样本量估计值来评估生物标志物。次要指标是纵向一致性的度量(线性混合效应模型残差的标准差),以及认知组之间的分离度(由于认知受损导致的随时间变化的t统计量)。当应用于阿尔茨海默病的临床前(对认知正常个体的二级预防)和临床(针对认知受损个体的治疗)试验时,我们的数据驱动框架BioDisCVR发现的基于比值的tau PET生物标志物比以前的工作有很大优势,既减少了测量误差,又降低了假设临床试验的样本量估计值。我们的分析表明,通过加速试验和减少样本量,患者有望获得显著益处(减少与实验药物相关的健康风险暴露)并大幅节省成本。我们的研究支持利用像BioDisCVR这样的数据驱动方法实现临床获益,有可能对阿尔茨海默病及其他疾病的药物开发产生积极影响。