Lyrvall Johan, Bakk Zsuzsa, Oser Jennifer, Di Mari Roberto
University of Catania.
Leiden University.
Struct Equ Modeling. 2024 Feb 16;31(4):592-603. doi: 10.1080/10705511.2023.2300087. eCollection 2024.
We present a bias-adjusted three-step estimation approach for multilevel latent class models (LC) with covariates. The proposed approach involves (1) fitting a single-level measurement model while ignoring the multilevel structure, (2) assigning units to latent classes, and (3) fitting the multilevel model with the covariates while controlling for measurement error introduced in the second step. Simulation studies and an empirical example show that the three-step method is a legitimate modeling option compared to the existing one-step and two-step methods.
我们提出了一种针对具有协变量的多级潜在类别模型(LC)的偏差调整三步估计方法。所提出的方法包括:(1)在忽略多级结构的情况下拟合单级测量模型;(2)将单元分配到潜在类别中;(3)在控制第二步中引入的测量误差的同时,用协变量拟合多级模型。模拟研究和一个实证例子表明,与现有的一步法和两步法相比,三步法是一种合理的建模选择。