Suppr超能文献

带协变量的多层次潜在类别分析的两步估计器。

A two-step estimator for multilevel latent class analysis with covariates.

机构信息

Department of Economics and Business, University of Catania, Corso Italia 55, 95128, Catania, Italy.

Department of Methodology and Statistics, Leiden University, Leiden, The Netherlands.

出版信息

Psychometrika. 2023 Dec;88(4):1144-1170. doi: 10.1007/s11336-023-09929-2. Epub 2023 Aug 6.

Abstract

We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.

摘要

我们提出了一种两步估计器,用于具有协变量的多层次潜在类别分析 (LCA)。在第一步中估计观测项目的测量模型,在第二步中在模型中添加协变量,同时固定测量模型参数。我们讨论了模型识别,并为有效实现估计器推导了期望最大化算法。通过广泛的模拟研究,我们表明 (1) 这种方法与现有的多层次 LCA 逐步估计器表现相似,但计算时间大大减少,(2) 与一步估计器相比,它产生的参数估计几乎无偏且效率损失可忽略不计。该建议通过对公民规范预测因素的跨国分析来说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b8/10656341/97c91b143f60/11336_2023_9929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验