Heming Michael, Börsch Anna-Lena, Melnik Simone, Gmahl Noemi, Müller-Miny Louisa, Dambietz Christine, Fisch Lukas, Kühnel Timm, Brix Tobias J, Janssen Alice, Schumann Eva, Gross Catharina C, Varghese Julian, Hahn Tim, Wiendl Heinz, Meyer Zu Hörste Gerd
Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
Institute of Medical Informatics, University of Münster, Münster, Germany.
Ann Neurol. 2025 Apr;97(4):779-790. doi: 10.1002/ana.27157. Epub 2024 Dec 12.
Cerebrospinal fluid (CSF) provides unique insights into the brain and neurological diseases. However, the potential of CSF flow cytometry applied on a large scale remains unknown.
We used data-driven approaches to analyze paired CSF and blood flow cytometry measurements from 8,790 patients (discovery cohort) and CSF only data from 3,201 patients (validation cohort) collected across neurological diseases in a real-world setting.
In somatoform controls (n = 788), activation of T cells increased with age in both CSF and blood, whereas double negative blood T cells (CD3CD4CD8) decreased with age. A machine learning model of CSF and blood immune cells defined immune age, which correlated strongly with true biological age (r = 0.71). Classifying all diseases solely based on the CSF/blood parameters in 8,790 patients resulted in clusters of 4 disease categories: healthy, autoimmune, meningoencephalitis, and neurodegenerative. This clustering was validated in an analytically independent test dataset (8,790 patients) and in a temporally independent cohort (3,201 patients). Patients with multiple sclerosis were more likely to have progressive disease when assigned to the neurodegeneration cluster and to have lower disability in the autoimmune cluster. Patients with dementia in the neurodegeneration cluster showed more severe disease progression. Flow cytometry helped differentiate dementia from controls, thereby enhancing the diagnostic power of routine CSF diagnostics.
Flow cytometry of CSF and blood thus identifies site-specific aging patterns and disease-overarching patterns of neurodegeneration. ANN NEUROL 2025;97:779-790.
脑脊液(CSF)为了解大脑和神经系统疾病提供了独特视角。然而,大规模应用脑脊液流式细胞术的潜力仍不明确。
我们采用数据驱动方法,分析了来自8790例患者的配对脑脊液和血液流式细胞术测量数据(发现队列),以及在真实临床环境中收集的3201例患者的仅脑脊液数据(验证队列),这些患者涵盖多种神经系统疾病。
在躯体形式障碍对照组(n = 788)中,脑脊液和血液中的T细胞激活均随年龄增加,而血液中的双阴性T细胞(CD3CD4CD8)随年龄减少。脑脊液和血液免疫细胞的机器学习模型定义了免疫年龄,其与实际生物学年龄密切相关(r = 0.71)。仅根据8790例患者的脑脊液/血液参数对所有疾病进行分类,结果形成了4种疾病类别集群:健康、自身免疫、脑膜脑炎和神经退行性疾病。这种聚类在一个分析独立的测试数据集(8790例患者)和一个时间独立的队列(3201例患者)中得到了验证。多发性硬化症患者被归类到神经退行性疾病集群时更易出现疾病进展,而归类到自身免疫集群时残疾程度较低。神经退行性疾病集群中的痴呆患者疾病进展更为严重。流式细胞术有助于区分痴呆与对照组,从而增强常规脑脊液诊断的诊断能力。
脑脊液和血液的流式细胞术可识别特定部位的衰老模式以及神经退行性疾病的总体疾病模式。《神经病学纪事》2025年;97:779 - 790。