Zhang Jintu, Bonati Luigi, Trizio Enrico, Zhang Odin, Kang Yu, Hou TingJun, Parrinello Michele
Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 ,Zhejiang ,China.
Atomistic Simulations, Italian Institute of Technology, Genova 16152, Italy.
J Chem Theory Comput. 2024 Dec 24;20(24):10787-10797. doi: 10.1021/acs.jctc.4c01197. Epub 2024 Dec 12.
Enhanced sampling simulations make the computational study of rare events feasible. A large family of such methods crucially depends on the definition of some collective variables (CVs) that could provide a low-dimensional representation of the relevant physics of the process. Recently, many methods have been proposed to semiautomatize the CV design by using machine learning tools to learn the variables directly from the simulation data. However, most methods are based on feedforward neural networks and require some user-defined physical descriptors. Here, we propose bypassing this step using a graph neural network to directly use the atomic coordinates as input for the CV model. This way, we achieve a fully automatic approach to CV determination that provides variables invariant under the relevant symmetries, especially the permutational one. Furthermore, we provide different analysis tools to favor the physical interpretation of the final CV. We prove the robustness of our approach using different methods from the literature for the optimization of the CV, and we prove its efficacy on several systems, including a small peptide, an ion dissociation in explicit solvent, and a simple chemical reaction.
增强采样模拟使罕见事件的计算研究变得可行。这类方法中的一大类关键取决于一些集体变量(CVs)的定义,这些变量能够提供该过程相关物理特性的低维表示。最近,已经提出了许多方法,通过使用机器学习工具直接从模拟数据中学习变量,来实现集体变量设计的半自动操作。然而,大多数方法基于前馈神经网络,并且需要一些用户定义的物理描述符。在此,我们提出使用图神经网络绕过这一步骤,直接将原子坐标用作集体变量模型的输入。通过这种方式,我们实现了一种用于确定集体变量的全自动方法,该方法能提供在相关对称性(特别是置换对称性)下不变的变量。此外,我们提供了不同的分析工具,以促进对最终集体变量的物理解释。我们使用文献中不同的方法来优化集体变量,证明了我们方法的稳健性,并在包括一个小肽、明确溶剂中的离子解离以及一个简单化学反应在内的几个系统上证明了其有效性。