Wei Xuefeng, Gou Zexi, Ye Jianting, Shi L H, Zhao Jianwei, Yang Lei, Zhang Linbo, Zhang Kun, Jia Ruonan
Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
Adv Sci (Weinh). 2025 Feb;12(5):e2411229. doi: 10.1002/advs.202411229. Epub 2024 Dec 12.
Exploring ionogels with superior conductivity, mechanical properties, and long-lasting room temperature phosphorescence (RTP) offers considerable potential for new-generation optoelectronics. However, reports on ionogels remain limited owing to the contradiction between the flexibility required for stretching and the rigidity necessary for RTP and load-bearing within the same ionogels. Here, a facile strategy is reported to enhance the toughness and extend the RTP of ionogels by salting-out-induced microphase separation, which results in the formation of an IL-rich phase (soft) for stretching and ionic conduction and a polymer-rich phase (stiff) for energy dissipation and clustering-triggered phosphorescence. The obtained ionogels exhibit high stretchability (≈400% strain), toughness (≈∼20 MJ m), ionic conductivity (8.4 mS cm), and ultralong afterglow lifetime (112.4 ms). This strategy is applicable to chromophores with color-tunable phosphorescence. By leveraging observable full-color RTP and real-time electrical signals in response to diverse stimuli (i.e., stretching and pressing), an intelligent grasping strategy is developed for robust hand pose reconstruction. In addition, a tactile-visual fusion recognition keyboard is created with dual functionality of information encryption and signal transmission. The ease of fabrication, wide tunability, and multifunctionality will help expand the scope of ionogels for smart devices.
探索具有卓越导电性、机械性能和持久室温磷光(RTP)的离子凝胶,为新一代光电子学提供了巨大潜力。然而,由于在同一离子凝胶中,拉伸所需的柔韧性与RTP及承载所需的刚性之间存在矛盾,关于离子凝胶的报道仍然有限。在此,报道了一种简便策略,通过盐析诱导的微相分离来增强离子凝胶的韧性并延长其RTP,这导致形成富含离子液体的相(软相)用于拉伸和离子传导,以及富含聚合物的相(硬相)用于能量耗散和聚集引发的磷光。所获得的离子凝胶表现出高拉伸性(≈400%应变)、韧性(≈∼20 MJ m)、离子电导率(8.4 mS cm)和超长余辉寿命(112.4 ms)。该策略适用于具有颜色可调磷光的发色团。通过利用可观察到的全色RTP和响应各种刺激(即拉伸和按压)的实时电信号,开发了一种用于稳健手部姿态重建的智能抓握策略。此外,还创建了一种具有信息加密和信号传输双重功能的触觉-视觉融合识别键盘。其易于制造、广泛的可调性和多功能性将有助于扩大离子凝胶在智能设备中的应用范围。