Suppr超能文献

使用分层贝叶斯建模增强对比敏感度的统计推断。

Using Hierarchical Bayesian Modeling to Enhance Statistical Inference on Contrast Sensitivity.

作者信息

Zhao Yukai, Lesmes Luis Andres, Dorr Michael, Lu Zhong-Lin

机构信息

Center for Neural Science, New York University, New York, NY, USA.

Adaptive Sensory Technology Inc., San Diego, CA, USA.

出版信息

Transl Vis Sci Technol. 2024 Dec 2;13(12):17. doi: 10.1167/tvst.13.12.17.

Abstract

PURPOSE

The purpose of this study is to introduce a nonparametric hierarchical Bayesian model (HBM) that enables advanced statistical inference on contrast sensitivity (CS) both at individual spatial frequencies (SFs) and across multiple SFs in clinical trials, where CS measurements are crucial for assessing safety and efficacy.

METHODS

The HBM computes the joint posterior distribution of CS at six Food and Drug Administration-designated SFs across the population, individual, and test levels. It incorporates covariances at both population and individual levels to capture the relationship between CSs across SFs. A Bayesian inference procedure (BIP) is also used to estimate the posterior distribution of CS at each SF independently. Both methods are applied to a quantitative CSF (qCSF) dataset of 112 subjects and compared in terms of precision, test-retest reliability of CS estimates, sensitivity, accuracy, and statistical power in detecting CS changes.

RESULTS

The HBM reveals correlations between CSs in pairs of SFs and provides significantly more precise estimates and higher test-retest reliability compared to the BIP. Additionally, it improves the average sensitivity and accuracy in detecting CS changes for individual subjects, as well as statistical power for detecting group-level CS changes at individual and combinations of multiple SFs between luminance conditions.

CONCLUSIONS

The HBM establishes a comprehensive framework to enhance sensitivity, accuracy, and statistical power for detecting CS changes in hierarchical experimental designs.

TRANSLATIONAL RELEVANCE

The HBM presents a valuable tool for advancing CS assessments in the clinic and clinical trials, potentially improving the evaluation of treatment efficacy and patient outcomes.

摘要

目的

本研究旨在介绍一种非参数分层贝叶斯模型(HBM),该模型能够在临床试验中对个体空间频率(SFs)以及多个SFs之间的对比敏感度(CS)进行高级统计推断,而CS测量对于评估安全性和有效性至关重要。

方法

HBM计算在食品药品监督管理局指定的六个SFs上,总体、个体和测试水平的CS联合后验分布。它纳入了总体和个体水平的协方差,以捕捉不同SFs之间CS的关系。还使用贝叶斯推断程序(BIP)独立估计每个SF处CS的后验分布。这两种方法都应用于112名受试者的定量脑脊液(qCSF)数据集,并在精度、CS估计的重测可靠性、敏感性、准确性以及检测CS变化的统计功效方面进行比较。

结果

与BIP相比,HBM揭示了不同SFs对之间CS的相关性,并提供了更精确的估计和更高的重测可靠性。此外,它提高了检测个体受试者CS变化的平均敏感性和准确性,以及检测亮度条件下个体和多个SFs组合的组水平CS变化的统计功效。

结论

HBM建立了一个综合框架,以提高分层实验设计中检测CS变化的敏感性、准确性和统计功效。

转化相关性

HBM为推进临床和临床试验中的CS评估提供了一个有价值的工具,可能改善治疗效果和患者结局的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f339/11645744/a8a5d6bc85f4/tvst-13-12-17-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验